期刊论文详细信息
BMC Cell Biology
Arginine68 is an essential residue for the C-terminal cleavage of human Atg8 family proteins
Long Yu1  Jun O Liu3  Qiang Huang2  Jiaxue Wu2  Haijie Ma2  Chao Liu2 
[1] Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China;State Key Laboratory of Genetic Engineering; Institute of Genetics; School of Life Sciences, Fudan University, Shanghai 200433, China;Departments of Pharmacology and Molecular Sciences and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
关键词: Alternative splicing;    Autophagy;    MAP1LC3B;    Atg8;   
Others  :  855273
DOI  :  10.1186/1471-2121-14-27
 received in 2012-11-06, accepted in 2013-05-15,  发布年份 2013
PDF
【 摘 要 】

Background

Autophagy is a conserved cellular process that degrades and recycles cytoplasmic components via a lysosomal pathway. The phosphatidylethanolamine (PE)-conjugation of the Atg8 protein plays an important role in the yeast autophagy process. In humans, six Atg8 homologs, including MAP1LC3A, MAP1LC3B, MAP1LC3C (refer to LC3A, LC3B, and LC3C hereafter), GABARAP, GABARAPL1, and GABARAPL2 have been reported. All of them can be conjugated to PE through a ubiquitin-like conjugation system, and be located to autophagosomes.

Results

In this study, we found 3 new alternative splicing isoforms in LC3B, GABARAP, and GABARAPL1, (designated as LC3B-a, GABARAP-a and GABARAPL1-a, respectively). None of them can go through the PE-conjugation process and be located to autophagosomes. Interestingly, compared with LC3B, LC3B-a has a single amino acid (Arg68) deletion due to the NAGNAG alternative splicing in intron 3. Through structural simulations, we found that the C-terminal tail of LC3B-a is less mobile than that of LC3B, thus affecting its C-terminal cleavage by human ATG4 family proteins. Furthermore, we found that Arg68 is an essential residue facilitating the interaction between human Atg8 family proteins and ATG4B by forming a salt bridge with Asp171 of ATG4B. Depletion of this salt bridge reduces autophagosomes formation and autophagic flux under both normal and nutrition starvation conditions.

Conclusions

These results suggest Arg68 is an essential residue for the C-terminal cleavage of Atg8 family proteins during the autophagy process.

【 授权许可】

   
2013 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722032138549.pdf 2030KB PDF download
46KB Image download
85KB Image download
104KB Image download
104KB Image download
65KB Image download
【 图 表 】

【 参考文献 】
  • [1]Klionsky DJ, Emr SD: Autophagy as a regulated pathway of cellular degradation. Science 2000, 290(5497):1717-1721.
  • [2]Yang Z, Klionsky DJ: Eaten alive: a history of macroautophagy. Nat Cell Biol 2010, 12(9):814-822.
  • [3]Shintani T, Klionsky DJ: Autophagy in health and disease: A double-edged sword. Science 2004, 306(5698):990-995.
  • [4]Donohue TM Jr: Autophagy and ethanol-induced liver injury. World J Gastroenterol 2009, 15(10):1178-1185.
  • [5]Nishino I: Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep 2003, 3(1):64-69.
  • [6]Cherra SJ 3rd, Dagda RK, Chu CT: Review: autophagy and neurodegeneration: survival at a cost? Neuropathol Appl Neurobiol 2010, 36(2):125-132.
  • [7]Huang J, Brumell JH: Autophagy in immunity against intracellular bacteria. Curr Top Microbiol Immunol 2009, 335:189-215.
  • [8]Li Y, Zhang J, Chen X, Liu T, He W, Chen Y, Zeng X: Molecular Machinery of Autophagy and Its Implication in Cancer. Am J Med Sci 2012, 343:155-161.
  • [9]Huang J, Klionsky DJ: Autophagy and human disease. Cell Cycle 2007, 6(15):1837-1849.
  • [10]Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M: A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003, 5:539-545.
  • [11]Yang Z, Klionsky DJ: Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010, 22(2):124-131.
  • [12]Yorimitsu T, Klionsky DJ: Autophagy: molecular machinery for self-eating. Cell Death Differ 2005, 12(Suppl 2):1542-1552.
  • [13]Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y: The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000, 151(2):263-276.
  • [14]Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ: Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 1999, 10(5):1337-1351.
  • [15]Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E: Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 1999, 10(5):1367-1379.
  • [16]Schlumpberger M, Schaeffeler E, Straub M, Bredschneider M, Wolf DH, Thumm M: AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J Bacteriol 1997, 179(4):1068-1076.
  • [17]Mizushima N, Sugita H, Yoshimori T, Ohsumi Y: A new protein conjugation system in human. J Biol Chem 1998, 273(51):33889-33892.
  • [18]Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y: In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 2004, 279(39):40584-40592.
  • [19]Sou YS, Tanida I, Komatsu M, Ueno T, Kominami E: Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 2006, 281(6):3017-3024.
  • [20]Nakatogawa H, Ichimura Y, Ohsumi Y: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130(1):165-178.
  • [21]Xie Z, Nair U, Klionsky DJ: Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 2008, 19(8):3290-3298.
  • [22]He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, et al.: Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003, 278(31):29278-29287.
  • [23]Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19:5720-5728.
  • [24]Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004, 117(13):2805-2812.
  • [25]Mann SS, Hammarback JA: Molecular characterization of light chain. Part 3. J Biol Chem 1994, 269(15):11492-11497.
  • [26]Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW: GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 1999, 397:69-72.
  • [27]Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E: Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 2006, 273(11):2553-2562.
  • [28]Sagiv Y, Legesse-Miller A, Porat A, Elazar Z: GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 2000, 19:1494-1504.
  • [29]Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL: A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 2003, 278(51):51841-51850.
  • [30]Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E: Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 2002, 277(16):13739-13744.
  • [31]Tanida I, Sou Y, Minematsu‒Ikeguchi N, Ueno T, Kominami E: Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 2006, 273(11):2553-2562.
  • [32]Hiller M, Huse K, Szafranski K, Jahn N, Hampe J, Schreiber S, Backofen R, Platzer M: Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat Genet 2004, 36(12):1255-1257.
  • [33]Modrek B, Lee C: A genomic view of alternative splicing. Nat Genet 2002, 30(1):13-19.
  • [34]Koscielny G, Le Texier V, Gopalakrishnan C, Kumanduri V, Riethoven JJ, Nardone F, Stanley E, Fallsehr C, Hofmann O, Kull M, et al.: ASTD: The Alternative Splicing and Transcript Diversity database. Genomics 2009, 93(3):213-220.
  • [35]Tanida I, Ueno T, Kominami E: Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 2004, 279(46):47704-47710.
  • [36]Pankiv S, Hoyvarade Clausen T, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: p62/SGSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282(33):24131-24145.
  • [37]Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K, Adachi W, Fujioka Y, Noda NN, Ohsumi Y, Inagaki F: The NMR structure of the autophagy-related protein Atg8. J Biomol NMR 2010, 47(3):237-241.
  • [38]Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F: The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 2004, 9(7):611-618.
  • [39]Coyle JE, Qamar S, Rajashankar KR, Nikolov DB: Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron 2002, 33(1):63-74.
  • [40]Bavro VN, Sola M, Bracher A, Kneussel M, Betz H, Weissenhorn W: Crystal structure of the GABAA-receptor-associated protein, GABARAP. EMBO Rep 2002, 3:183-189.
  • [41]Paz Y, Elazar Z, Fass D: Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem 2000, 275(33):25445-25450.
  • [42]Satoo K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F: Crystallization and preliminary crystallographic analysis of human Atg4B-LC3 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007, 63(2):99-102.
  • [43]Black DL: Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003, 72:291-336.
  • [44]Condorelli GBR, Smith RJ: Two alternatively spliced forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics. J Biol Chem 1994, 269(11):8510-8516.
  • [45]Tadokoro KY-IM, Tachibana M, Fujishiro M, Nagao K, Toyoda M, Ozaki M, Ono M, Miki N, Miyashita T, Yamada M: Frequent occurrence of protein isoforms with or without a single amino acid residue by subtle alternative splicing: the case of Gln in DRPLA affects subcellular localization of the products. J Hum Genet 2005, 50:382-394.
  • [46]Vogan KJ, Underhill DA, Gros P: An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity. Mol Cell Biol 1996, 16(12):6677-6686.
  • [47]Lorkovic ZJ, Lehner R, Forstner C, Barta A: Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 2005, 11(7):1095-1107.
  • [48]Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F: Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 2008, 13(12):1211-1218.
  • [49]Amar N, Lustig G, Ichimura Y, Ohsumi Y, Elazar Z: Two newly identified sites in the ubiquitin-like protein Atg8 are essential for autophagy. EMBO Rep 2006, 7(6):635-642.
  • [50]Fass E, Amar N, Elazar Z: Identification of essential residues for the C-terminal cleavage of the mammalian LC3: a lesson from yeast Atg8. Autophagy 2007, 3(1):48.
  • [51]Simsek M, Al-Bulushi T, Shanmugakonar M, Al-Barwani HS, Bayoumi R: Allele-specific amplification of exon 7 in the survival motor neuron (SMN) genes for molecular diagnosis of spinal muscular atrophy. Genet Test 2003, 7(4):325-327.
  • [52]Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003, 31(13):3381-3385.
  • [53]Kaminski G, Friesner RA, Tirado-Rives J, Jorgensen WL: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001, 105(28):6474-6487.
  • [54]Jorgensen WL: OPLS Force Fields. In The Encyclopedia of Computational Chemistry, Volume 3. Edited by Schleyer PR. New York: John Wiley & Sons; 1998:1986-1989.
  • [55]Berendsen HJC, van der Spoel D, van Drunen R: GROMACS: A message-passing parallel molecular dynamics implementation. Comp Phys Comm 1995, 91:43-56.
  • [56]Lindahl E, Hess B, van der Spoel D: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 2001, 7:306-317.
  • [57]Berendsen HJC, Postma JPM, Gunsteren WF, DiNola A, Haak JR: Molecular dynamics with coupling to an external bath. J Chem Phys 1984, 81:3684-3690.
  • [58]DeLano WL: The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific LLC; 2004.
  文献评价指标  
  下载次数:18次 浏览次数:7次