期刊论文详细信息
BMC Neuroscience
Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue
Alberto Salazar Juárez2  Anabel Flores Zamora2  Ricardo Hernández Miramontes2  Jorge Alberto Hernández Calderón2  Maura Epifanía Matus Ortega2  Rodolfo Acevedo Ortuño2  Juan Carlos Calva Nieves2  Mayra Medecigo Ríos2  Philippe Leff Gelman1  Benito Antón Palma2 
[1] Department of Neuroscience, National Institute of Perinatology, Montes Urales # 800, México D.F., 11000, Mexico;Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, México D.F., 14370, Mexico
关键词: Neuropeptide;    Immunoconjugate;    Immunoassay;    Cross-reactivity;    α-amidation;    Hybridoma;    Antisera;    Antibody;    Leucine;    Valine;   
Others  :  1230642
DOI  :  10.1186/s12868-015-0206-y
 received in 2015-03-27, accepted in 2015-10-01,  发布年份 2015
PDF
【 摘 要 】

Background

Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species.

Methods

The α-amidated isoform of valine residue (Val-CONH 2 ) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (–CONH 2 ) and free α-carboxylic acid (−COO ) isovariant of the valine residue.

Results

P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb.

Conclusions

Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.

【 授权许可】

   
2015 Palma et al.

【 预 览 】
附件列表
Files Size Format View
Fig.8. 36KB Image download
Fig.7. 128KB Image download
Fig.6. 37KB Image download
Fig.5. 40KB Image download
Fig.4. 13KB Image download
Figure 1. 46KB Image download
Fig.2. 35KB Image download
Fig.1. 68KB Image download
Fig.8. 36KB Image download
Fig.7. 128KB Image download
Fig.6. 37KB Image download
Fig.5. 40KB Image download
20150313062515444.pdf 1197KB PDF download
Fig.3. 32KB Image download
Fig.2. 35KB Image download
Fig.1. 68KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.1.

Fig.2.

Figure 1.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Elphick MR, Mirabeau O: The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates. Front Endocrinol Lausanne 2014, 5:93.
  • [2]Baldwin GS, Patel O, Shulkes A: Evolution of gastrointestinal hormones: the cholecystokinin/gastrin family. Curr Opin Endocrinol Diabetes Obes 2010, 17:77-88.
  • [3]Hewes RS, Taghert PH: Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 2001, 11:1126-1142.
  • [4]Chufán EE, De M, Eipper BA, Mains RE, Amzel LM: Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme. Structure 2009, 17:965-973.
  • [5]Bousquet-Moore D, Mains RE: Eipper BA Peptidylgycine α-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. J Neurosci Res 2010, 88:2535-2545.
  • [6]Rajagopal C, Stone KL, Mains RE, Eipper BA: Secretion stimulates intramembrane proteolysis of a secretory granule membrane enzyme. J Biol Chem 2010, 285:34632-34644.
  • [7]Prigge ST, Mains RE, Eipper BA, Amzel LM: New insights into copper mono-oxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci 2000, 57:1236-1259.
  • [8]Eipper BA, Milgranas L, Husten EJ, Yun HY, Mains RE: Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci 1993, 2:489-497.
  • [9]Kolhekar AS, Bell J, Shiozaki EN, Jin L, Keutmann HT, Hand TA, Mains RE, Eipper BA: Essential features of the catalytic core of peptidyl-alpha-hydroxyglycine alpha-amidating lyase. Biochemistry 2002, 41:12384-12394.
  • [10]Merkler DJ, Kulathila R, Consalvo AP, Young SD: Ash DE.18O isotopic 13C NMR shift as proof that bifunctional peptidylglycine alpha-amidating enzyme is a monooxygenase. Biochemistry 1992, 31(32):7282-7288.
  • [11]Chen P, Solomon E: Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. J Am Chem Soc 2004, 126:4991-5000.
  • [12]Czyzyk TA, Ning Y, Hsu MS, Peng B, Mains RE, Eipper BA, Pintar JE: Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev Biol 2005, 287:301-313.
  • [13]Lénárd L, Kovács A, Ollmann T, Péczely L, Zagoracz O, Gálosi R, László K: Positive reinforcing effects of RFamide-related peptide-1 in the rat central nucleus of amygdala. Behav Brain Res 2014, 275:101-106.
  • [14]Sharma SD, Raghuraman G, Lee MS, Prabhakar NR, Kumar GK: Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. J Appl Physiol 2009, 106:12-19.
  • [15]Merkler DJ: C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzym Microb Technol 1994, 16:450-456.
  • [16]Tsutsui K, Ukena K: Hypothalamic LPXRF-amide peptides in vertebrates: identification, localization and hypophysiotropic activity. Peptides 2006, 25:1121-1129.
  • [17]Seizinger BR, Liebisch DC, Gramsch C, Herz A, Weber E, Evans CJ, Esch FS, Böhlen P: Isolation and structure of a novel C-terminally amidated opioid peptide, amidorphin, from bovine adrenal medulla. Nature 1985, 313:57-59.
  • [18]Jensen TD, Holst JJ, Fahrenkrug J: Secretion of pancreastatins from the porcine digestive tract. Scand J Gastroenterol 1994, 29:376-384.
  • [19]Lovejoy DA, Balment RJ: Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen Comp Endocrinol 1999, 115:1-22.
  • [20]Vinson GP, Whitehouse BJ, Dell A, Etienne T, Morris HR: Characterisation of an adrenal zona glomerulosa-stimulating component of posterior pituitary extracts as alpha-MSH. Nature 1980, 284(5755):464-467.
  • [21]Weber E, Esch FS, Böhlen P, Paterson S, Corbett AD, McKnight AT, Kosterlitz HW, Barchas JD, Evans CJ: Metorphamide: isolation, structure, and biologic activity of an amidated opioid octapeptide from bovine brain. Proc Natl Acad Sci USA 1983, 80:7362-7366.
  • [22]Nilsson A, Carlquist M, Jörnvall H, Mutt V: Isolation and characterization of chicken secretin. Eur J Biochem 1980, 112:383-388.
  • [23]Lederis K, Letter A, McMaster D, Moore G, Schlesinger D: Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from Catostomus. Science 1982, 218:162-165.
  • [24]Furukawa Y, Nakamaru K, Wakayama H, Fujisawa Y, Minakata H, Ohta S, Morishita F, Matsushima O, Li L, Romanova E, Sweedler JV, Park JH, Romero A, Cropper EC, Dembrow NC, Jing J, Weiss KR, Vilim FS: The enterins: a novel family of neuropeptides isolated from the enteric nervous system and CNS of Aplysia. J Neurosci 2001, 21(20):8247-8261.
  • [25]Sandberg M, Weber SG: Techniques for neuropeptide determination. Trends Analyt Chem 2003, 22:522-527.
  • [26]Grant GA, Crankshaw MW, Gorka J: Edman sequencing as tool for characterization of synthetic peptides. Methods Enzymol 1997, 289:395-419.
  • [27]Glick RB, Pasternak JJ: Recombinant DNA technology. In Molecular biotechnology: principles and applications of recombinant DNA. Edited by Glick RB, Pasternak JJ. ASM Press, Washington; 1998:45-77.
  • [28]Zhu P, Bowden P, Zhang D, Marshall JG: Mass spectrometry of peptides and proteins from human blood. Mass Spectrom Rev 2011, 30(5):685-732.
  • [29]Goding JW. Monoclonal antibodies: principles and practice. In: Goding JW, editor. Production and application of monoclonal antobodies in cellbiology, biochemistry and immunology. 3rd ed. London: Academic Press; 1996. p. 141–180.
  • [30]Kim KH, Shim JH, Seo EH, Cho MC, Kang JW, Kim SH, Yu DY, Song EY, Lee HG, Sohn JH, Kim J, Dinarello CA, Yoon DY: Interleukin-32 monoclonal antibodies for immunohistochemistry, Western blotting, and ELISA. J Immunol Methods 2008, 333:38-50.
  • [31]Iwabata H, Yoshida M, Komatsu Y: Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics 2005, 5(18):4653-4664.
  • [32]Jacobowitz DM, O’Donohue TL: alpha-melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Acad Sci USA 1978, 75:6300-6304.
  • [33]Oliver C, Porter JC: Distribution and characterization of alpha-melanocyte-stimulating hormone in the rat brain. Endocrinology 1978, 102:697-705.
  • [34]Sonders M, Brachas JD, Weber E: Regional distribution of metorphamide in rat and guinea pig brain. Biochem Biophys Res Commun 1984, 122:892-898.
  • [35]O’Donohue TL, Charlton CG, Miller RL, Boden G, Jacobowitz DM: Identification, characterization, and distribution of secretin immunoreactivity in rat and pig brain. Proc Natl Acad Sci USA 1981, 78:5221-5224.
  • [36]Kozicz T, Yanaihara H, Arimura A: Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J Comp Neurol 1998, 391:1-10.
  • [37]Solcia E, Usellini L, Buffa R, Rindi G, Villani L, Zampatti C, Silini E: Endocrine cells producing regulatory peptides. Experientia 1987, 43:839-850.
  • [38]Luger TA, Scholzen TE, Brzoska T, Böhm M: New insights into the functions of alpha-MSH and related peptides in the immune system. Ann N Y Acad Sci 2003, 994:133-140.
  • [39]Harlow E, Lane D. Using antibodies: a laboratory manual. In: Harlow ED, Lane D editors. New York: Cold Spring Harbor Laboratory Press; 1996. p. 222–66.
  • [40]Ohnishi S, Kamikubo H, Onitsuka M, Kataoka M, Shortle D: Conformational preference of polyglycine in solution to elongated structure. J Am Chem Soc 2006, 128:16338-16344.
  • [41]Hockfield S, Carlson S, Evans C, Levitt P, Pintar J, Silberstein L: Selected methods for antibody and nucleic acid probes. In Molecular probes of the nervous system. Edited by Hockfield S, Carlson S, Evans C, Levitt P, Pintar J, Silberstein L. Cold Spring Harbor Laboratory Press, New York; 1993:263-502.
  • [42]de StGroth SF, Scheidegger D: Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 1980, 35:1-21.
  • [43]Loi PK, McGraw HF, Tublitz NJ: Peptide detection in single cells using a dot immunoblot assay. Peptides 1997, 18:749-753.
  • [44]Asai M, Zubieta M, Matamoros-Trejo G, Linares G, Agustin P: Diurnal variations of opioid peptides and synenkephalin in vitro release in the amygdala of kindled rats. Neuropeptides 1998, 32:293-299.
  • [45]Anton B, Fein J, To T, Li X, Silberstein L, Evans CJ: Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J Comp Neurol 1996, 368:229-251.
  • [46]Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 4th edition. New York Academic Press, New York; 1998.
  • [47]Bicknell AB: The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol 2008, 20:692-699.
  • [48]Boarder MR, Contractor H, Marriott D, McArdle W: Metorphamide, a C-terminally amidated opioid peptide, in human adrenal and human phaeochromocytoma. Regul Pept 1985, 12:35-42.
  • [49]Fekete EM, Zorrilla EP: Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol 2007, 28:1-27.
  • [50]Shioda S, Ohtaki H, Nakamachi T, Dohi K, Watanabe J, Nakajo S, Arata S, Kitamura S, Okuda H, Takenoya F, Kitamura Y: Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann N Y Acad Sci 2006, 1070:550-560.
  • [51]Higashijima T, Uzu S, Nakajima T, Ross EM: Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem 1988, 263(14):6491-6494.
  • [52]Tezapsidis N, Parish DC: Characterization of a metalloprotease from ovine chromaffin granules, which cleaves a proenkephalin fragment (BAM12P) at a single arginine residue. Biochem J 1994, 301:607-614.
  • [53]Catania A: Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci 2008, 31:353-360.
  • [54]Brzoska T, Böhm M, Lügering A, Loser K, Luger TA: Terminal signal: anti-inflammatory effects of α-melanocyte-stimulating hormone related peptides beyond the pharmacophore. Adv Exp Med Biol 2010, 681:107-116.
  • [55]Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H: Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009, 61:283-357.
  • [56]Rehfeld JF, Bundgaard JR, Goetze JP, Friis-Hansen L, Hilsted L, Johnsen AH: Naming progastrin-derived peptides. Regul Pept 2004, 120:177-183.
  • [57]D’Agostino G, Diano S: Alpha-melanocyte stimulating hormone: production and degradation. J Mol Med Berl 2010, 88(12):1195-1201.
  • [58]Loh YP, Kim T, Rodriguez YM, Cawley NX: Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells. J Mol Neurosci 2004, 22:63-71.
  文献评价指标  
  下载次数:108次 浏览次数:31次