期刊论文详细信息
BMC Complementary and Alternative Medicine
Supercritical fluid extract of Lycium chinense Miller root inhibition of melanin production and its potential mechanisms of action
Tsong-Min Chang2  Kuei-Jen Chang3  Wang-Ping Ko3  Wan-Yu Hsieh2  Tsang-Chi Tsai2  Wen-Ying Huang2  Huey-Chun Huang1 
[1] Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan;Department of Applied Cosmetology & Master Program of Cosmetic Sciences, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu Dist, Taichung City 43302, Taiwan;O’right Plant Extract R&D Center, Taoyuan, Taiwan
关键词: ROS;    PKA;    MAPK;    melanogenesis;    Lycium chinense Miller;   
Others  :  1087488
DOI  :  10.1186/1472-6882-14-208
 received in 2013-11-13, accepted in 2014-06-23,  发布年份 2014
PDF
【 摘 要 】

Background

The mode of action of Lycium chinense Miller root extract in skin care has never been explored. In the present study, Lycium chinense Miller root was extracted by the supercritical fluid CO2 extraction method.

Methods

In the present study, the components of the root extract were analyzed by HPLC. The effects of the extract on tyrosinase activity and melanin content were determined spectrophotometrically; the expression of melanogenesis-related proteins was determined by Western blotting; the possible signaling pathways involved in the root extract-mediated depigmentation were also investigated using specific inhibitors.

Results

The results revealed that the SFE of Lycium chinense Miller root (2.37-7.11 mg/mL) effectively suppressed intracellular tyrosinase activity and decreased the melanin content in B16F10 cells. The root extract also effectively decreased intracellular reactive oxygen species (ROS) levels. Furthermore, the root extract decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) and then inhibited melanogenesis in B16F10 cells. The root extract also showed antioxidant capacities and depleted cellular ROS.

Conclusions

Our results indicate that the SFE of Lycium chinense Miller root inhibited melanogenesis in B16F10 cells by down-regulation of both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways or through its antioxidant properties.

【 授权许可】

   
2014 Huang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116031014641.pdf 1014KB PDF download
Figure 6. 45KB Image download
Figure 5. 45KB Image download
Figure 4. 53KB Image download
Figure 3. 48KB Image download
Figure 2. 39KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Spritz RA, Hearing VJ Jr: Genetic disorders of pigmentation. Adv Hum Genet 1994, 22:1-45.
  • [2]Briganti S, Camera E, Picardo M: Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 2003, 16(2):101-110.
  • [3]Funasaka Y, Komoto M, Ichihashi M: Depigmenting Effect of α-Tocopheryl Ferulate on Normal Human Melanocytes. Pigment Cell Res 2000, 13:170-174.
  • [4]Seo S-Y, Sharma VK, Sharma N: Mushroom Tyrosinase: Recent Prospects. J Agric Food Chem 2003, 51(10):2837-2853.
  • [5]Hearing VJ, Jimenez M: Mammalian tyrosinase–the critical regulatory control point in melanocyte pigmentation. Int J Biochem 1987, 19(12):1141-1147.
  • [6]Jimenez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA, Garcia-Borron JC: A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem 1994, 269(27):17993-18000.
  • [7]Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ: A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 1992, 11(2):519-526.
  • [8]Garcia-Borron JC, Sanchez-Laorden BL, Jimenez-Cervantes C: Melanocortin-1 receptor structure and functional regulation. Pigment Cell Res 2005, 18(6):393-410.
  • [9]Yamakoshi J, Otsuka F, Sano A, Tokutake S, Saito M, Kikuchi M, Kubota Y: Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res 2003, 16(6):629-638.
  • [10]Imokawa G: Analysis of initial melanogenesis including tyrosinase transfer and melanosome differentiation through interrupted melanization by glutathione. J Invest Dermatol 1989, 93(1):100-107.
  • [11]Kumano Y, Sakamoto T, Egawa M, Iwai I, Tanaka M, Yamamoto I: In vitro and in vivo prolonged biological activities of novel vitamin C derivative, 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G), in cosmetic fields. J Nutr Sci Vitaminol (Tokyo) 1998, 44(3):345-359.
  • [12]Huang H-C, Hsieh W-Y, Niu Y-L, Chang T-M: Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract. BMC Complement Altern Med 2012, 12(1):72. BioMed Central Full Text
  • [13]Huang HC, Wang HF, Yih KH, Chang LZ, Chang TM: Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS. Int J Mol Sci 2012, 13(11):14679-14697.
  • [14]Huang HC, Chang TY, Chang LZ, Wang HF, Yih KH, Hsieh WY, Chang TM: Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo Linn and chemical composition analysis by GC-MS. Molecules 2012, 17(4):3902-3916.
  • [15]Huang HC, Huang WY, Chiu SH, Ke HJ, Chiu SW, Wu SY, Kuo FS, Chang TM: Antimelanogenic and antioxidative properties of Bifidobacterium bifidum. Arch Dermatol Res 2011, 303(7):527-531.
  • [16]Huang HCS, Ke HJ, Chiu SW, Wu SY, Chang TM: Antimelanogenic and antioxidant activities of Bifidobacterium infantis. Infect Immun 2011, 5:7.
  • [17]Kim SY, Lee KH, Chang KS, Bock JY, Jung MY: Taste and flavor compounds in box thorn (Lycium chinense Miller) leaves. Food Chem 1997, 58(4):297-303.
  • [18]Xiao PG, Xing ST, Wang LW: Immunological aspects of Chinese medicinal plants as antiageing drugs. J Ethnopharmacol 1993, 38(2–3):167-175.
  • [19]Kim SY, Kim HP, Huh H, Kim YC: Antihepatotoxic zeaxanthins from the fruits ofLycium chinense. Arch Pharm Res 1997, 20(6):529-532.
  • [20]Funayama SY K, Konno C, Hikino H: Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks1. Tetrahedron Lett 1980, 21(14):2.
  • [21]Kim HP, Kim SY, Lee EJ, Kim YC, Kim YC: Zeaxanthin dipalmitate from Lycium chinense has hepatoprotective activity. Res Commun Mol Pathol Pharmacol 1997, 97(3):301-314.
  • [22]Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K: An improved colorimetric assay for interleukin 2. J Immunol Methods 1986, 93(2):157-165.
  • [23]Bilodeau ML, Greulich JD, Hullinger RL, Bertolotto C, Ballotti R, Andrisani OM: BMP-2 stimulates tyrosinase gene expression and melanogenesis in differentiated melanocytes. Pigment Cell Res 2001, 14(5):328-336.
  • [24]Tsuboi T, Kondoh H, Hiratsuka J, Mishima Y: Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. Pigment Cell Res 1998, 11(5):275-282.
  • [25]Yang JY, Koo JH, Song YG, Kwon KB, Lee JH, Sohn HS, Park BH, Jhee EC, Park JW: Stimulation of melanogenesis by scoparone in B16 melanoma cells. Zhongguo Yao Li Xue Bao 2006, 27(11):1467-1473.
  • [26]Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999, 26(9–10):1231-1237.
  • [27]Galato D, Ckless K, Susin MF, Giacomelli C, Ribeiro-do-Valle RM, Spinelli A: Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Rep 2001, 6(4):243-250.
  • [28]Murrant CL, Reid MB: Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 2001, 55(4):236-248.
  • [29]Drewa G, Schachtschabel DO, Palgan K, Grzanka A, Sujkowska R: The influence of rutin on the weight, metastasis and melanin content of B16 melanotic melanoma in C57BL/6 mice. Neoplasma 1998, 45(4):266-271.
  • [30]Busca R, Ballotti R: Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000, 13(2):60-69.
  • [31]Abdel-Malek Z, Swope V, Collins C, Boissy R, Zhao H, Nordlund J: Contribution of melanogenic proteins to the heterogeneous pigmentation of human melanocytes. J Cell Sci 1993, 106(Pt 4):1323-1331.
  • [32]Kameyama K, Sakai C, Kuge S, Nishiyama S, Tomita Y, Ito S, Wakamatsu K, Hearing VJ: The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities. Pigment Cell Res 1995, 8(2):97-104.
  • [33]Levy C, Khaled M, Fisher DE: MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006, 12(9):406-414.
  • [34]Hirata N, Naruto S, Ohguchi K, Akao Y, Nozawa Y, Iinuma M, Matsuda H: Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells. Bioorg Med Chem 2007, 15(14):4897-4902.
  • [35]Kim DS, Jeong YM, Park IK, Hahn HG, Lee HK, Kwon SB, Jeong JH, Yang SJ, Sohn UD, Park KC: A new 2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells. Biol Pharm Bull 2007, 30(1):180-183.
  • [36]Smalley K, Eisen T: The involvement of p38 mitogen-activated protein kinase in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and anti-proliferative effects in B16 murine melanoma cells. FEBS Lett 2000, 476(3):198-202.
  • [37]Singh SK, Sarkar C, Mallick S, Saha B, Bera R, Bhadra R: Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma. Pigment Cell Res 2005, 18(2):113-121.
  • [38]Hirobe T: Basic fibroblast growth factor stimulates the sustained proliferation of mouse epidermal melanoblasts in a serum-free medium in the presence of dibutyryl cyclic AMP and keratinocytes. Development 1992, 114(2):435-445.
  • [39]Emerit I: Free radicals and aging of the skin. EXS 1992, 62:328-341.
  • [40]Mukhtar H, Elmets CA: Photocarcinogenesis: mechanisms, models and human health implications. Photochem Photobiol 1996, 63(4):356-357.
  • [41]Ding HY, Chou TH, Lin RJ, Chan LP, Wang GH, Liang CH: Antioxidant and antimelanogenic behaviors of Paeonia suffruticosa. Plant Foods Hum Nutr 2011, 66(3):275-284.
  • [42]Sapkota K, Park SE, Kim JE, Kim S, Choi HS, Chun HS, Kim SJ: Antioxidant and antimelanogenic properties of chestnut flower extract. Biosci Biotechnol Biochem 2010, 74(8):1527-1533.
  文献评价指标  
  下载次数:104次 浏览次数:42次