期刊论文详细信息
BMC Medical Genomics
Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis
Yun Xiao2  Xia Li1  Jing Bai1  Yujia Lan1  Guanxiong Zhang1  Fulong Yu1  Tingting Liu1  Ling Liu1  Huihui Fan1  Yunpeng Zhang1  Lin Pang1  Jinyuan Xu1  Hongying Zhao1 
[1] College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China;Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
关键词: miRNA;    DNA methylation;    RNA-seq;    MeDIP-seq;    Major psychosis;   
Others  :  1233850
DOI  :  10.1186/s12920-015-0139-4
 received in 2015-06-10, accepted in 2015-09-25,  发布年份 2015
PDF
【 摘 要 】

Background

DNA methylation is thought to be extensively involved in the pathogenesis of many diseases, including major psychosis. However, most studies focus on DNA methylation alteration at promoters of protein-coding genes, despite the poor correlation between DNA methylation and gene expression.

Methods

We analyzed differentially methylated regions and differentially expressed genes in patients with schizophrenia and bipolar disorder and normal subjects. Gene expression and DNA methylation were analyzed with RNA-seq and MeDIP-seq of post-mortem brain tissue (brain region BA9) cohort in five schizophrenia, seven bipolar disorder cases and six controls, respectively.

Results

Here, we performed a large-scale integrative analysis using MeDIP-seq, coupled with RNA-seq, on brain samples from major psychotic and normal subjects and observed obvious discrepancy between DNA methylation and gene expression. We found that differentially methylated regions (DMRs) were distributed across different types of genomic elements, especially introns. These intronic DMRs were significantly enriched for diverse regulatory elements, such as enhancers and binding sites of certain transcriptional factors (e.g., Pol3). Notably, we found that parts of intronic DMRs overlapped with some intragenic miRNAs, such as hsa-mir-7-3. These intronic DMR-related miRNAs were found to target many differentially expressed genes. Moreover, functional analysis demonstrated that differential target genes of intronic DMR-related miRNAs were sufficient to capture many important biological processes in major psychosis, such as neurogenesis, suggesting that miRNAs may function as important linkers mediating the relationships between DNA methylation alteration and gene expression changes.

Conclusions

Collectively, our study indicated that DNA methylation alteration could induce expression changes indirectly by affecting miRNAs and the exploration of DMR-related miRNAs and their targets enhanced understanding of the molecular mechanisms underlying major psychosis.

【 授权许可】

   
2015 Zhao et al.

【 预 览 】
附件列表
Files Size Format View
20151123024251560.pdf 2910KB PDF download
Fig. 5. 59KB Image download
Fig. 4. 63KB Image download
Fig. 3. 71KB Image download
Fig. 2. 86KB Image download
Fig. 1. 56KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Craddock N, O’Donovan MC, Owen MJ: Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 2006, 32(1):9-16.
  • [2]State MW, Levitt P: The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 2011, 14(12):1499-506.
  • [3]Reik W: Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447(7143):425-32.
  • [4]Abdolmaleky HM, Thiagalingam S, Wilcox M: Genetics and Epigenetics in Major Psychiatric Disorders. Am J Pharmacogenomics 2005, 5(3):149-60.
  • [5]Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer's disease and bipolar disorder patients. Translational psychiatry. 2012;2:e132. doi:10.1038/tp.2012.55.
  • [6]Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, et al.: Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 2007, 13(4):429-41.
  • [7]Tamura Y, Kunugi H, Ohashi J, Hohjoh H: Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry 2007, 12(6):519.
  • [8]Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama-Shigeno Y, Yoshikawa T, et al.: DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. The Journal of neuroscience 2005, 25(22):5376-81.
  • [9]Abdolmaleky HM, Cheng K-h, Faraone SV, Wilcox M, Glatt SJ, Gao F, et al.: Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 2006, 15(21):3132-45.
  • [10]Gavin DP, Sharma RP: Histone modifications, DNA methylation, and schizophrenia. Neurosci Biobehav Rev 2010, 34(6):882-8.
  • [11]Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al.: Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008, 82(3):696-711.
  • [12]Xiao Y, Camarillo C, Ping Y, Arana TB, Zhao H, Thompson PM, et al.: The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS One 2014., 9(4) Article ID e95875
  • [13]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, et al.: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39(4):457-66.
  • [14]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13(7):484-92.
  • [15]Simmer F, Brinkman AB, Assenov Y, Matarese F, Kaan A, Sabatino L, et al.: Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics 2012, 7(12):1355-67.
  • [16]Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM: Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry 2011, 69(2):188-93.
  • [17]Xiao Y, Guan J, Ping Y, Xu C, Huang T, Zhao H, et al.: Prioritizing cancer-related key miRNA-target interactions by integrative genomics. Nucleic Acids Res 2012, 40(16):7653-65.
  • [18]Xiao Y, Ping Y, Fan H, Xu C, Guan J, Zhao H, et al.: Identifying dysfunctional miRNA-mRNA regulatory modules by inverse activation, cofunction, and high interconnection of target genes: a case study of glioblastoma. Neuro-Oncology 2013, 15(7):818-28.
  • [19]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103(7):2257-61.
  • [20]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-56.
  • [21]Zhao H, Liu T, Liu L, Zhang G, Pang L, Yu F, et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci Rep 2015, 5:11938.
  • [22]Laird PW: Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010, 11(3):191-203.
  • [23]Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, et al.: MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 2010, 124(1):183-91.
  • [24]Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al.: The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998, 59 Suppl 20:22-33.
  • [25]Rajkowska G, Goldman-Rakic PS: Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex 1995, 5(4):323-37.
  • [26]Miller CL, Diglisic S, Leister F, Webster M, Yolken RH: Evaluating RNA status for RT-PCR in extracts of postmortem human brain tissue. Biotechniques 2004, 36(4):628-33.
  • [27]Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012, 149(7):1635-46.
  • [28]Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012, 22(9):1760-74.
  • [29]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al.: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473(7345):43-9.
  • [30]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39(Database issue):D152-7.
  • [31]Chien CH, Sun YM, Chang WC, Chiang-Hsieh PY, Lee TY, Tsai WC, et al.: Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 2011, 39(21):9345-56.
  • [32]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [33]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al.: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-7.
  • [34]Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, Lehrach H, et al.: Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage. Genome Res 2010, 20(10):1441-50.
  • [35]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7(3):562-78.
  • [36]Levesque D, Rouillard C: Nur77 and retinoid X receptors: crucial factors in dopamine-related neuroadaptation. Trends Neurosci 2007, 30(1):22-30.
  • [37]Xing G, Zhang L, Russell S, Post R: Reduction of dopamine-related transcription factors Nurr1 and NGFI-B in the prefrontal cortex in schizophrenia and bipolar disorders. Schizophr Res 2006, 84(1):36-56.
  • [38]Severino G, Manchia M, Contu P, Squassina A, Lampus S, Ardau R, et al.: Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBalpha gene, a critical component of the circadian clock system. Bipolar Disord 2009, 11(2):215-20.
  • [39]Maia BM, Rocha RM, Calin GA: Clinical significance of the interaction between non-coding RNAs and the epigenetics machinery: challenges and opportunities in oncology. Epigenetics 2014, 9(1):75-80.
  • [40]Lorincz MC, Dickerson DR, Schmitt M, Groudine M: Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 2004, 11(11):1068-75.
  • [41]Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency. Cell. 2013;152(6):1324–43. doi:10.1016/j.cell.2013.02.043.
  • [42]Rylski M, Kaczmarek L: Ap-1 targets in the brain. Front Biosci 2004, 9:8-23.
  • [43]Consortium EP: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74.
  • [44]Kaltschmidt B, Baeuerle PA, Kaltschmidt C: Potential involvement of the transcription factor NF-κB in neurological disorders. Mol Asp Med 1993, 14(3):171-90.
  • [45]Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ, et al.: Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 2010, 17(5):620-8.
  • [46]Borchert GM, Lanier W, Davidson BL: RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006, 13(12):1097-101.
  • [47]Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res 2004, 14(10A):1902-10.
  • [48]Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al.: microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007, 8(2):R27. BioMed Central Full Text
  • [49]Kocerha J, Kauppinen S, Wahlestedt C: microRNAs in CNS disorders. Neruomol Med 2009, 11(3):162-72.
  • [50]Villa C, Fenoglio C, De Riz M, Clerici F, Marcone A, Benussi L, et al.: Role of hnRNP-A1 and miR-590-3p in neuronal death: genetics and expression analysis in patients with Alzheimer disease and frontotemporal lobar degeneration. Rejuvenation Res 2011, 14(3):275-81.
  • [51]Beveridge N, Gardiner E, Carroll A, Tooney P, Cairns M: Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2009, 15(12):1176-89.
  • [52]Sokolov BP: Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol Neuropsychopharmacologicum (CINP) 2007, 10(4):547-55.
  • [53]Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al.: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466(7303):253-7.
  • [54]Miller BH, Wahlestedt C: MicroRNA dysregulation in psychiatric disease. Brain Res 2010, 1338:89-99.
  • [55]Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al.: The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010, 28(10):1045-8.
  • [56]Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011, 146(3):353-8.
  文献评价指标  
  下载次数:43次 浏览次数:8次