期刊论文详细信息
GigaScience
Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers
Stephan Beck3  Primo Schär1  Reiner Schulz2  Yuka Suzuki3  Daniel Cortázar1  Andrew Feber3  Pawandeep Dhami3  Gareth A Wilson3 
[1] Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland;Department of Medical and Molecular Genetics, King’s College London, London, UK;Medical Genomics, UCL Cancer Institute, University College London, London, UK
关键词: MeDUSA;    Computational pipeline;    DNA methylation;    Epigenomics;    Epigenetics;    MeDIP-seq;    Methylome;   
Others  :  861994
DOI  :  10.1186/2047-217X-1-3
 received in 2012-03-26, accepted in 2012-07-12,  发布年份 2012
PDF
【 摘 要 】

Background

Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge.

Results

We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3 biological replicates of Thymine DNA glycosylase (Tdg) knockout (KO) embryonic stem cells (ESCs), in vitro differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis pipeline for the identification of differentially methylated regions (DMRs). The observed increase of hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for Tdg in the protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into Tdg function, including an association of TDG with low-methylated distal regulatory regions.

Conclusions

We demonstrate that MeDUSA is able to detect both large-scale changes between cells from different stages of differentiation and also small but significant changes between the methylomes of cells that only differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm TDG's function in the protection of regulatory regions from epigenetic silencing.

【 授权许可】

   
2012 Wilson et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725010029636.pdf 2218KB PDF download
22KB Image download
33KB Image download
27KB Image download
29KB Image download
89KB Image download
60KB Image download
【 图 表 】

【 参考文献 】
  • [1]Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16(1):6-21.
  • [2]Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL: Dynamic changes in the human methylome during differentiation. Genome Res 2010, 20(3):320-331.
  • [3]Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462(7271):315-322.
  • [4]Beck S, Rakyan VK: The methylome: approaches for global DNA methylation profiling. Trends Genet 2008, 24(5):231-237.
  • [5]Laird PW: Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010, 11(3):191-203.
  • [6]Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005, 37(8):853-862.
  • [7]Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Bäckdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJ, Durbin R, Tavaré S, Beck S: A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 2008, 26(7):779-785.
  • [8]Pelizzola M, Koga Y, Urban AE, Krauthammer M, Weissman S, Halaban R, Molinaro AM: MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res 2008, 18(10):1652-1659.
  • [9]Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, Lehrach H, Herwig R, Adjaye J: Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage. Genome Res 2010, 20(10):1441-1450.
  • [10]Huang J, Renault V, Sengenes J, Touleimat N, Michel S, Lathrop M, Tost J: MeQA: a pipeline for MeDIP-seq data quality assessment and analysis. Bioinformatics 2012, 28(4):587-588.
  • [11]Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473(7347):398-402.
  • [12]Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, Rakyan VK, Noon LA, Lloyd AC, Stupka E, Schiza V, Teschendorff AE, Schroth GP, Flanagan A, Beck S: Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 2011, 21(4):515-524.
  • [13]Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, Steinacher R, Jiricny J, Bird A, Schär P: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011, 470(7334):419-423.
  • [14]Cortázar D, Kunz C, Saito Y, Steinacher R, Schär P: The enigmatic thymine DNA glycosylase. DNA Repair (Amst) 2007, 6(4):489-504.
  • [15]Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Bruno T, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A: Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146(1):67-79.
  • [16]Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo webcite
  • [17]HEROIC portal. http://projects.ensembl.org/heroic webcite
  • [18]MeDUSA homepage . http://www2.cancer.ucl.ac.uk/medicalgenomics/medusa webcite
  • [19]Wilson G, Dharmi P, Saito Y, Cortázar D, Kunz C, Schär P, Beck S: Resources for the MeDUSA (Methylated DNA Utility for Sequence Analysis) MeDIP-seq computational analysis pipeline for the identification of differentially methylated regions, and associated methylome data from 18 wild-type and mutant mouse ES, NP and MEF cells. GigaScience 2012. http://dx.doi.org/10.5524/100035 webcite
  • [20]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [21]Chen PY, Feng S, Joo JW, Jacobsen SE, Pellegrini M: A comparative analysis of DNA methylation across human embryonic stem cell lines. Genome Biol 2011, 12(7):R62. BioMed Central Full Text
  • [22]Dyachenko OV, Schevchuk TV, Kretzner L, Buryanov YI, Smith SS: Human non-CG methylation: are human stem cells plant-like? Epigenetics 2010, 5(7):569-572.
  • [23]Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG: Whole-genome DNA methylation profiling using MethylCap-seq. Methods 2010, 52(3):232-236.
  • [24]Nix DA, Courdy SJ, Boucher KM: Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics 2008, 9:523. BioMed Central Full Text
  • [25]Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454(7205):766-770.
  • [26]Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schübeler D: DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011, 480(7378):490-495.
  • [27]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM: Ensembl 2011. Nucleic Acids Res 2011, 39:D800-806.
  • [28]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [29]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [30]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [31]FASTQC. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc webcite
  • [32]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26(6):841-842.
  • [33]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11(3):R25. BioMed Central Full Text
  • [34]McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G: GREAT improves functional interpretation of cis-regulatory regions. Nature Biotechnol 2010, 28(5):495-501.
  • [35]Margueron R, Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature 2011, 469(7330):343-349.
  • [36]Ingenuity. http://www.ingenuity.com webcite
  • [37]Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 2005, 434(7035):843-850.
  • [38]Chen L, Wu G, Ji H: hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data. Bioinformatics 2011, 27(10):1447-1448.
  • [39]Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, Yuan GC, Orkin SH: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008, 32(4):491-502.
  • [40]Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA: SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 2009, 23(21):2484-2489.
  • [41]Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA: Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008, 134(3):521-533.23.
  • [42]Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH: Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 2009, 139(7):1303-1314.
  • [43]Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 2010, 24(4):368-380.
  • [44]Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D: Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 2008, 32(4):503-518.
  • [45]Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MF, Göttgens B: Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010, 7(4):532-544.
  • [46]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333(6047):1300-1303.
  • [47]He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333(6047):1303-1307.
  • [48]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12(6):996-1006.
  • [49]PICARD. http://picard.sourceforge.net webcite
  • [50]GREAT: Genomic Regions Enrichment of Annotations Tool. http://great.stanford.edu/public/html/index.php webcite
  文献评价指标  
  下载次数:60次 浏览次数:15次