期刊论文详细信息
BMC Medicine
Transmission potential of influenza A/H7N9, February to May 2013, China
Cécile Viboud1  Mark A Miller1  Sherry Towers3  Lone Simonsen2  Gerardo Chowell3 
[1]Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, 31 Center Dr, MSC 2220, Bethesda 20892-2220, Maryland, USA
[2]Department of Global Health, School of Public Health and Health Services, George Washington University, 2175 K Street, Washington, DC 20037, USA
[3]Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, 900 S. Cady Mall, Tempe 85287-2402, Arizona, USA
关键词: Real-time estimation;    China;    Transmission potential;    Swine influenza;    Influenza A/H5N1;    Emerging infection;    Animal reservoir;    Spillover;    Reproduction number;    Transmissibility;    Influenza A/H7N9;   
Others  :  855673
DOI  :  10.1186/1741-7015-11-214
 received in 2013-04-29, accepted in 2013-08-30,  发布年份 2013
PDF
【 摘 要 】

Background

On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness.

Methods

We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses.

Results

Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus.

Conclusion

Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months.

【 授权许可】

   
2013 Chowell et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722055258142.pdf 977KB PDF download
49KB Image download
55KB Image download
69KB Image download
67KB Image download
36KB Image download
【 图 表 】

【 参考文献 】
  • [1]Butler D: Mapping the H7N9 avian flu outbreaks. Nature 2013. doi:10.1038/nature.2013.12863
  • [2]World Health Organization: Human infection with avian influenza A(H7N9) virus in China -Update on May 17th, 2013. Available online: http://www.who.int/csr/don/2013_05_17/en/index.html webcite
  • [3]Horby P: H7N9 is a virus worth worrying about. Nature 2013, 496:399.
  • [4]Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, Xiang N, Chen E, Tang F, Wang D, Meng L, Hong Z, Tu W, Cao Y, Li L, Ding F, Liu B, Wang M, Xie R, Gao R, Li X, Bai T, Zou S, He J, Hu J, Xu Y, Chai C, Wang S, Gao Y, Jin L, et al.: Preliminary report: epidemiology of the avian influenza A (H7N9) outbreak in China. N Eng J Medin press
  • [5]Chen Y, Liang W, Yang S, Wu N, Gao H, Sheng J, Yao H, Wo J, Fang Q, Cui D, Li Y, Yao X, Zhang Y, Wu H, Zheng S, Diao H, Xia S, Zhang Y, Chan K-H, Tsoi HW, Teng JL, Song W, Wang P, Lau S-Y, Zheng M, Chan JF, To KK, Chen H, Li L, Yuen KY: Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 2013, 381:1916-1925.
  • [6]CIDRAP News: H7N9 gene study links patient and poultry-market viruses. Available from: http://www.cidrap.umn.edu/cidrap/content/influenza/avianflu/news/apr2513poultry.html webcite. 25 April 2013
  • [7]Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, et al.: Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013, 368:1888-1897.
  • [8]Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, Yoon S-W, Wong S-S, Farooqui A, Wang J, Banner D, Chen R, Zheng R, Zhou J, Zhang Y, Hong W, Dong W, Cai Q, Roehrl MH, Huang SS, Kelvin AA, Yao T, Zhou B, Chen X, Leung GM, Poon LL, Webster RG, Webby RJ, Peiris JS, Guan Y, Shu Y: Infectivity, transmission, and pathology of human H7N9 influenza in ferrets and pigs. Science 2013, 341:183-186.
  • [9]From SARS to H7N9: will history repeat itself? Lancet 2013, 381:1333.
  • [10]Shadbolt P: WHO: H7N9 virus 'one of the most lethal so far’. CNN. Available online from: http://www.cnn.com/2013/04/24/world/asia/china-birdflu/index.html webcite. 26 April 2013
  • [11]Bettencourt LM, Ribeiro RM: Real time bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS One 2008, 3:e2185.
  • [12]Chowell G, Nishiura H, Bettencourt LM: Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface 2007, 4:155-166.
  • [13]Birrell PJ, Ketsetzis G, Gay NJ, Cooper BS, Presanis AM, Harris RJ, Charlett A, Zhang XS, White PJ, Pebody RG, De Angelis D: Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London. Proc Natl Acad Sci U S A 2011, 108:18238-18243.
  • [14]Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C: SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol 2003, 224:1-8.
  • [15]Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D, Murray M: Transmission dynamics and control of severe acute respiratory syndrome. Science 2003, 300:1966-1970.
  • [16]Chowell G, Ammon CE, Hengartner NW, Hyman JM: Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland. Vaccine 2006, 24:6747-6750.
  • [17]Nishiura H, Castillo-Chavez C, Safan M, Chowell G: Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill 2009., 14
  • [18]Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic influenza. Nature 2004, 432:904-906.
  • [19]Viboud C, Tam T, Fleming D, Handel A, Miller MA, Simonsen L: Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine 2006, 24:6701-6707.
  • [20]Cauchemez S, Epperson S, Biggerstaff M, Swerdlow D, Finelli L, Ferguson NM: Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus. PLoS Med 2013, 10:e1001399.
  • [21]Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M: Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 2009, 15:1229-1235.
  • [22]Nishiura H, Mizumoto K, Ejima K: How to interpret the transmissibility of novel influenza A(H7N9): an analysis of initial epidemiological data of human cases from China. Theor Biol Med Model 2013, 10:30. BioMed Central Full Text
  • [23]Bettencourt LM, Ribeiro RM, Chowell G, Lant T, Castillo-Chavez C: Towards real time epidemiology: data assimilation, modeling and anomaly detection of health surveillance data streams. Intelligence and security informatics: biosurveillance. Lecture Notes in Comput Sci 2007, 4506:79-90.
  • [24]Yang F, Yuan L, Tan X, Huang C, Feng J: Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China. Ann Epidemiol 2013, 23:301-306.
  • [25]Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005, 437:209-214.
  • [26]Gao HN, Lu HZ, Cao B, Du B, Shang H, Gan JH, Lu SH, Yang YD, Fang Q, Shen YZ, Xi XM, Gu Q, Zhou XM, Qu HP, Yan Z, Li FM, Zhao W, Gao ZC, Wang GF, Ruan LX, Wang WH, Ye J, Cao HF, Li XW, Zhang WH, Fang XC, He J, Liang WF, Xie J, Zeng M, et al.: Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 2013, 368:2277-2285.
  • [27]Cowan G: Statistical Data Analysis. Oxford: Oxford University Press; 1998.
  • [28]FluTrackers: Laboratory-confirmed A/H7N9 influenza case series. Available online from: http://www.flutrackers.com/forum/showthread.php?t=202713 webcite (Last accessed on 25 April 2013)
  • [29]Pitzer VE, Olsen SJ, Bergstrom CT, Dowell SF, Lipsitch M: Little evidence for genetic susceptibility to influenza A (H5N1) from family clustering data. Emerg Infect Dis 2007, 13:1074-1076.
  • [30]Lindstrom S, Garten R, Balish A, Shu B, Emery S, Berman L, Barnes N, Sleeman K, Gubareva L, Villanueva J, Klimov A: Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg Infect Dis 2012, 18:834-837.
  • [31]Andreasen V, Viboud C, Simonsen L: Epidemiologic characterization of the 1918 influenza pandemic summer wave in Copenhagen: implications for pandemic control strategies. J Infect Dis 2008, 197:270-278.
  • [32]Chowell G, Viboud C, Simonsen L, Miller MA, Acuna-Soto R, Diaz JM, Martinez-Martin AF: The 1918–19 influenza pandemic in Boyaca, Colombia. Emerg Infect Dis 2012, 18:48-56.
  • [33]Viboud C, Tam T, Fleming D, Miller MA, Simonsen L: 1951 influenza epidemic, England and Wales, Canada, and the United States. Emerg Infect Dis 2006, 12:661-668.
  • [34]Boëlle P-Y, Ansart S, Cori A, Valleron A-J: Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respi Viruses 2011, 5:306-316.
  • [35]Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C, WHO Rapid Pandemic Assessment Collaboration: Pandemic potential of a strain of influenza A (H1N1): early findings. Science 2009, 324:1557-1561.
  • [36]Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, Potter G, Kenah E, Longini IM Jr: The transmissibility and control of pandemic influenza A (H1N1) virus. Science 2009, 326:729-733.
  • [37]Munayco CV, Gomez J, Laguna-Torres VA, Arrasco J, Kochel TJ, Fiestas V, Garcia J, Perez J, Torres I, Condori F, Nishiura H, Chowell G: Epidemiological and transmissibility analysis of influenza A(H1N1)v in a southern hemisphere setting: Peru. Euro Surveill 2009., 14
  • [38]White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, Pagano M: Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other Respi Viruses 2009, 3:267-276.
  • [39]Nishiura H, Chowell G, Safan M, Castillo-Chavez C: Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009. Theor Biol Med Model 2010, 7:1. BioMed Central Full Text
  • [40]Katriel G, Yaari R, Huppert A, Roll U, Stone L: Modelling the initial phase of an epidemic using incidence and infection network data, H1N1 pandemic in Israel as a case study. J R Soc Interface 2009, 2011:856-867.
  • [41]Chowell G, Miller MA, Viboud C: Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiol Infect 2007, 136:852-864.
  • [42]Chowell G, Viboud C, Simonsen L, Miller M, Alonso WJ: The reproduction number of seasonal influenza epidemics in Brazil, 1996–2006. Proc Biol Sci 2010, 277:1857-1866.
  • [43]Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, Kamaluddin MA, Mustafa AN, Kaur H, Ding LM, Othman G, Radzi HM, Kitsutani PT, Stockton PC, Arokiasamy J, Gary HE Jr, Anderson LJ: Case–control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 2000, 181:1755-1759.
  • [44]Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, Leung GM, Ho LM, Lam TH, Thach TQ, Chau P, Chan KP, Lo SV, Leung PY, Tsang T, Ho W, Lee KH, Lau EM, Ferguson NM, Anderson RM: Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 2003, 300:1961-1966.
  • [45]World Health Organization: Frequently Asked Questions on human infection caused by the avian influenza A(H7N9) virus Update as of 30 April 2013. http://www.who.int/influenza/human_animal_interface/faq_H7N9/en/ webcite
  • [46]CIDRAP news: NEWS SCAN: H7N9 emergency scale-backs, H7N7 in Germany, 2009 H1N1 interventions, low US flu activity. http://www.cidrap.umn.edu/cidrap/content/influenza/avianflu/news/may1713scan.html webcite
  • [47]Shaman J, Kohn M: Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci USA 2009, 106:3243-3248.
  • [48]Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M: Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol 2010, 8:e1000316.
  • [49]Breban R, Riou J, Fontanet A: Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet 2013, 382:694-699.
  • [50]Bai T, Zhou J, Shu Y: Serologic study for influenza A (H7N9) among high-risk groups in China. N Engl J Med 2013, 368:2339-2340.
  • [51]Boni MF, Chau NV, Dong N, Todd S, Nhat NT, de Bruin E, van Beek J, Hien NT, Simmons CP, Farrar J, Koopmans M: Population-level antibody estimates to novel influenza A/H7N9. J Infect Dis 2013, 208:554-558.
  • [52]Xu C, Havers F, Wang L, Chen T, Shi J, Wang D, et al.: Monitoring avian influenza A(H7N9) virus through national influenza-like illness surveillance, China. Emerg Infect Dis 2013., 19doi:10.3201/eid1908.130662
  文献评价指标  
  下载次数:36次 浏览次数:35次