期刊论文详细信息
BMC Developmental Biology
Zebrafish Ext2 is necessary for Fgf and Wnt signaling, but not for Hh signaling
Johan Ledin3  Beata Filipek-Gorniok1  Sabine Fischer2 
[1] Department of Medical Biochemistry and Microbiology, Uppsala University, Husarg. 3,751 23 Uppsala, Sweden;European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany;Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Norbyv. 18A, 752 36 Uppsala, Sweden
关键词: Hh;    Wnt;    Fgf;    Heparan;    HSPG;    Ext2;    Zebrafish;   
Others  :  1087444
DOI  :  10.1186/1471-213X-11-53
 received in 2011-02-14, accepted in 2011-09-05,  发布年份 2011
PDF
【 摘 要 】

Background

Heparan sulfate (HS) biosynthesis is tightly regulated during vertebrate embryo development. However, potential roles for HS biosynthesis in regulating the function of paracrine signaling molecules that bind to HS are incompletely understood.

Results

In this report we have studied Fgf, Wnt and Hedgehog (Hh) signaling in ext2 mutants, where heparan sulfate content is low. We found that Fgf targeted gene expression is reduced in ext2 mutants and that the remaining expression is readily inhibited by SU5402, an FGF receptor inhibitor. In the ext2 mutants, Fgf signaling is shown to be affected during nervous system development and reduction of Fgf ligands in the mutants affects tail development. Also, Wnt signaling is affected in the ext2 mutants, as shown by a stronger phenotype in ext2 mutants injected with morpholinos that partially block translation of Wnt11 or Wnt5b, compared to injected wild type embryos. In contrast, Hh dependent signaling is apparently unaffected in the ext2 mutants; Hh targeted gene expression is not reduced, the Hh inhibitor cyclopamine is not more affective in the mutants and Hh dependent cell differentiation in the retina and in the myotome are normal in ext2 mutants. In addition, no genetic interaction between ext2 and shha during development could be detected.

Conclusion

We conclude that ext2 is involved in Fgf and Wnt signaling but not in Hh signaling, revealing an unexpected specificity for ext2 in signaling pathways during embryonic development. Thus, our results support the hypothesis that regulation of heparan sulfate biosynthesis has distinct instructive functions for different signaling factors.

【 授权许可】

   
2011 Fischer et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116030256482.pdf 5764KB PDF download
Figure 5. 89KB Image download
Figure 4. 71KB Image download
Figure 3. 78KB Image download
Figure 2. 76KB Image download
Figure 1. 151KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Iozzo RV: Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998, 67:609-52.
  • [2]Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M: Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999, 68:729-77.
  • [3]Esko JD, Selleck SB: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002, 71:435-71.
  • [4]Lin X: Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004, 131:6009-21.
  • [5]Bulow HE, Hobert O: The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 2006, 22:375-407.
  • [6]Haltiwanger RS, Lowe JB: Role of glycosylation in development. Annu Rev Biochem 2004, 73:491-537.
  • [7]Hacker U, Nybakken K, Perrimon N: Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005, 6:530-41.
  • [8]Ornitz DM, Itoh N: Fibroblast growth factors. Genome Biol 2001, 2:REVIEWS3005.
  • [9]Lin X, Buff EM, Perrimon N, Michelson AM: Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 1999, 126:3715-23.
  • [10]Nybakken K, Perrimon N: Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim Biophys Acta 2002, 1573:280-91.
  • [11]Garcia-Garcia MJ, Anderson KV: Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 2003, 114:727-37.
  • [12]Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y: Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 2003, 302:1044-6.
  • [13]Galli A, Roure A, Zeller R, Dono R: Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. Development 2003, 130:4919-29.
  • [14]Norton WHJ, Ledin J, Grandel H, Neumann CJ: HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development (Cambridge, England) 2005, 132:4963-73.
  • [15]Pan Y, Woodbury A, Esko JD, Grobe K, Zhang X: Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development 2006, 133:4933-44.
  • [16]Pan Y, Carbe C, Powers A, Zhang EE, Esko JD, Grobe K, Feng GS, Zhang X: Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development 2008, 135:301-10.
  • [17]Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, Lele Z, Hammerschmidt M, Postlethwait J, Solnica-Krezel L: The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 2001, 1:251-64.
  • [18]Ohkawara B, Yamamoto TS, Tada M, Ueno N: Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 2003, 130:2129-38.
  • [19]De Cat B, Muyldermans SY, Coomans C, Degeest G, Vanderschueren B, Creemers J, Biemar F, Peers B, David G: Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 2003, 163:625-35.
  • [20]Grobe K, Inatani M, Pallerla SR, Castagnola J, Yamaguchi Y, Esko JD: Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 2005, 132:3777-86.
  • [21]Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991, 64:841-8.
  • [22]Rapraeger AC, Krufka A, Olwin BB: Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991, 252:1705-8.
  • [23]Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL: Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 2000, 407:1029-34.
  • [24]Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M: Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 2000, 6:743-50.
  • [25]Ornitz DM: FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000, 22:108-12.
  • [26]Desbordes SC, Sanson B: The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development 2003, 130:6245-55.
  • [27]Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA: Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 2003, 299:2039-45.
  • [28]Lin X, Perrimon N: Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 1999, 400:281-4.
  • [29]Gerlitz O, Basler K: Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev 2002, 16:1055-9.
  • [30]Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N: Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 2001, 128:87-94.
  • [31]Hacker U, Lin X, Perrimon N: The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 1997, 124:3565-73.
  • [32]Bellaiche Y, The I, Perrimon N: Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 1998, 394:85-8.
  • [33]Panakova D, Sprong H, Marois E, Thiele C, Eaton S: Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005, 435:58-65.
  • [34]Eugster C, Panakova D, Mahmoud A, Eaton S: Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev Cell 2007, 13:57-71.
  • [35]Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D: Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 2004, 279:42732-41.
  • [36]Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U: Domain structure of heparan sulfates from bovine organs. J Biol Chem 1996, 271:17804-10.
  • [37]Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, Kusche-Gullberg M: Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem 2007, 282:32802-10.
  • [38]Presto J, Thuveson M, Carlsson P, Busse M, Wilen M, Eriksson I, Kusche-Gullberg M, Kjellen L: Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci USA 2008, 105:4751-6.
  • [39]Ledin J, Ringvall M, Thuveson M, Eriksson I, Wilen M, Kusche-Gullberg M, Forsberg E, Kjellen L: Enzymatically active N-deacetylase/N-sulfotransferase-2 is present in liver but does not contribute to heparan sulfate N-sulfation. J Biol Chem 2006.
  • [40]Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 2000, 224:299-311.
  • [41]Stickens D, Zak BM, Rougier N, Esko JD, Werb Z: Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 2005, 132:5055-68.
  • [42]Hilton MJ, Gutierrez L, Martinez DA, Wells DE: EXT1 regulates chondrocyte proliferation and differentiation during endochondral bone development. Bone 2005, 36:379-86.
  • [43]Koziel L, Kunath M, Kelly OG, Vortkamp A: Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 2004, 6:801-13.
  • [44]Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K: The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 1998, 273:26265-8.
  • [45]McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, Tufaro F: The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat Genet 1998, 19:158-61.
  • [46]Lee JS, von der Hardt S, Rusch MA, Stringer SE, Stickney HL, Talbot WS, Geisler R, Nusslein-Volhard C, Selleck SB, Chien CB, et al.: Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 2004, 44:947-60.
  • [47]van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, et al.: Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 1996, 123:255-62.
  • [48]Schilling TF, Piotrowski T, Grandel H, Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Hammerschmidt M, Kane DA, Mullins MC, et al.: Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 1996, 123:329-44.
  • [49]Clement A, Wiweger M, von der Hardt S, Rusch MA, Selleck SB, Chien CB, Roehl HH: Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 2008, 4:e1000136.
  • [50]Whitfield TT, Granato M, van Eeden FJ, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, et al.: Mutations affecting development of the zebrafish inner ear and lateral line. Development 1996, 123:241-54.
  • [51]Trowe T, Klostermann S, Baier H, Granato M, Crawford AD, Grunewald B, Hoffmann H, Karlstrom RO, Meyer SU, Muller B, et al.: Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 1996, 123:439-50.
  • [52]Raible F, Brand M: Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development. Mech Dev 2001, 107:105-17.
  • [53]Roehl H, Nusslein-Volhard C: Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr Biol 2001, 11:503-7.
  • [54]Raible F, Brand M: Divide et Impera--the midbrain-hindbrain boundary and its organizer. Trends Neurosci 2004, 27:727-34.
  • [55]Shanmugalingam S, Houart C, Picker A, Reifers F, Macdonald R, Barth A, Griffin K, Brand M, Wilson SW: Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 2000, 127:2549-61.
  • [56]Griffin K, Patient R, Holder N: Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 1995, 121:2983-94.
  • [57]Draper BW, Stock DW, Kimmel CB: Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 2003, 130:4639-54.
  • [58]Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M: Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 1998, 125:2381-95.
  • [59]Fischer S, Draper BW, Neumann CJ: The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development 2003, 130:3515-24.
  • [60]Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW: Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000, 405:76-81.
  • [61]Lele Z, Bakkers J, Hammerschmidt M: Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis 2001, 30:190-4.
  • [62]Hammerschmidt M, Pelegri F, Mullins MC, Kane DA, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Heisenberg CP, et al.: Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 1996, 123:143-51.
  • [63]Piotrowski T, Schilling TF, Brand M, Jiang YJ, Heisenberg CP, Beuchle D, Grandel H, van Eeden FJ, Furutani-Seiki M, Granato M, et al.: Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 1996, 123:345-56.
  • [64]Grandel H, Draper BW, Schulte-Merker S: dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development 2000, 127:4169-78.
  • [65]Neumann CJ, Nuesslein-Volhard C: Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 2000, 289:2137-9.
  • [66]Shkumatava A, Fischer S, Muller F, Strahle U, Neumann CJ: Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 2004, 131:3849-58.
  • [67]Ingham PW, Kim HR: Hedgehog signalling and the specification of muscle cell identity in the zebrafish embryo. Exp Cell Res 2005, 306:336-42.
  • [68]Wolff C, Roy S, Ingham PW: Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 2003, 13:1169-81.
  • [69]Nasevicius A, Ekker SC: Effective targeted gene 'knockdown' in zebrafish. Nat Genet 2000, 26:216-20.
  • [70]Schauerte HE, van Eeden FJ, Fricke C, Odenthal J, Strahle U, Haffter P: Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 1998, 125:2983-93.
  • [71]Chen JK, Taipale J, Cooper MK, Beachy PA: Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002, 16:2743-8.
  • [72]Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M: Structural basis for FGF receptor dimerization and activation. Cell 1999, 98:641-50.
  • [73]Polanska UM, Fernig DG, Kinnunen T: Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm. Dev Dyn 2009, 238:277-93.
  • [74]Kirkpatrick CA, Knox SM, Staatz WD, Fox B, Lercher DM, Selleck SB: The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev Biol 2006, 300:570-82.
  • [75]Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH: Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 2002, 277:10982-6.
  • [76]Allen BL, Rapraeger AC: Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly. J Cell Biol 2003, 163:637-48.
  • [77]Siekmann AF, Brand M: Distinct tissue-specificity of three zebrafish ext1 genes encoding proteoglycan modifying enzymes and their relationship to somitic Sonic hedgehog signaling. Dev Dyn 2005, 232:498-505.
  • [78]Westerfield M: The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th edition. Univ. of Oregon Press, Eugene; 1995.
  • [79]Macdonald R, Xu Q, Barth KA, Mikkola I, Holder N, Fjose A, Krauss S, Wilson SW: Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron 1994, 13:1039-53.
  • [80]Ekker M, Wegner J, Akimenko MA, Westerfield M: Coordinate embryonic expression of three zebrafish engrailed genes. Development 1992, 116:1001-10.
  • [81]Ng JK, Kawakami Y, Buscher D, Raya A, Itoh T, Koth CM, Rodriguez Esteban C, Rodriguez-Leon J, Garrity DM, Fishman MC, et al.: The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 2002, 129:5161-70.
  • [82]Lewis KE, Concordet JP, Ingham PW: Characterisation of a second patched gene in the zebrafish Danio rerio and the differential response of patched genes to Hedgehog signalling. Dev Biol 1999, 208:14-29.
  文献评价指标  
  下载次数:20次 浏览次数:10次