期刊论文详细信息
BMC Genomics
Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis
Simon RM Jones2  Ben F Koop4  Ryosuke Yazawa3  Stuart G Jantzen4  Motoshige Yasuike1  Kim W Koczka4  Ben JG Sutherland4 
[1]Aquatic Genomics Research Center, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
[2]Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
[3]Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
[4]Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
关键词: Transcriptomics;    Sea lice;    Pacific salmon;    Atlantic salmon;    Iron;    Inflammation;    Immunity;    Host-parasite;    Ectoparasite;    Ecological genomics;   
Others  :  1217678
DOI  :  10.1186/1471-2164-15-200
 received in 2013-08-01, accepted in 2014-03-04,  发布年份 2014
PDF
【 摘 要 】

Background

Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection.

Results

In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon.

Conclusions

Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.

【 授权许可】

   
2014 Sutherland et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708010111440.pdf 685KB PDF download
Figure 5. 51KB Image download
Figure 4. 98KB Image download
Figure 3. 138KB Image download
Figure 2. 54KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Johnson SC, Treasurer JW, Bravo S, Nagasawa K, Kabata Z: A review of the impact of parasitic copepods on marine aquaculture. Zool Stud 2004, 43(2):229-243.
  • [2]Costello MJ: How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc R Soc B-Biol Sci 2009, 276(1672):3385-3394.
  • [3]Pike AW, Wadsworth SL: Sealice on salmonids: their biology and control. Adv Parasitol 2000, 44:233-337.
  • [4]Grimnes A, Jakobsen PJ: The physiological effects of salmon lice infection on post-smolt of Atlantic salmon. J Fish Biol 1996, 48(6):1179-1194.
  • [5]Nagasawa K, Ishida Y, Ogura M, Tadokoro K, Hiramatsu K: The Abundance and Distribution of Lepeophtheirus Salmonis (Copepoda: Caligidae) on six Species of Pacific Salmon in Offshore Waters of the North Pacific Ocean and Bering Sea. In Pathogens of Wild and Farmed Fish: Sea Lice. Volume 1. 1st edition. Edited by Boxshall G, Defaye D. Chichester, West Sussex: Ellis Horwood Limited; 1993:166-178.
  • [6]Beamish RJ, Neville CM, Sweeting RM, Ambers N: Sea lice on adult Pacific salmon in the coastal waters of Central British Columbia, Canada. Fish Res 2005, 76(2):198-208.
  • [7]Beamish RJ, Wade J, Pennell W, Gordon E, Jones S, Neville C, Lange K, Sweeting R: A large, natural infection of sea lice on juvenile Pacific salmon in the Gulf Islands area of British Columbia, Canada. Aquaculture 2009, 297(1–4):31-37.
  • [8]Wagner GN, Fast MD, Johnson SC: Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol 2008, 24(4):176-183.
  • [9]Jones SRM, Kim E, Bennett W: Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum). J Fish Dis 2008, 31(8):591-600.
  • [10]Sutherland BJG, Jantzen SG, Sanderson DS, Koop BF, Jones SRM: Differentiating size-dependent responses of juvenile pink salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections. Comp Biochem Physiol D 2011, 6(2):213-223.
  • [11]Bjørn PA, Finstad B, Kristoffersen R: Salmon lice infection of wild sea trout and Arctic char in marine and freshwaters: the effects of salmon farms. Aquacult Res 2001, 32(12):947-962.
  • [12]Bowers JM, Mustafa A, Speare DJ, Conboy GA, Brimacombe M, Sims DE, Burka JF: The physiological response of Atlantic salmon, Salmo salar L., to a single experimental challenge with sea lice, Lepeophtheirus salmonis. J Fish Dis 2000, 23(3):165-172.
  • [13]Pickering AD, Pottinger TG: Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem 1989, 7(1–6):253-258.
  • [14]Johnson SC, Albright LJ: Comparative susceptibility and histopathology of the response of naive Atlantic, chinook and coho salmon to experimental infection with Lepeophtheirus salmonis (Copepoda: Caligidae). Dis Aquat Organ 1992, 14(3):179-193.
  • [15]Krasnov A, Skugor S, Todorcevic M, Glover KA, Nilsen F: Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics 2012, 13:130. BioMed Central Full Text
  • [16]Fast MD, Ross NW, Craft CA, Locke SJ, MacKinnon SL, Johnson SC: Lepeophtheirus salmonis: characterization of prostaglandin E-2 in secretory products of the salmon louse by RP-HPLC and mass spectrometry. Exp Parasitol 2004, 107(1–2):5-13.
  • [17]Fast MD, Johnson SC, Eddy TD, Pinto D, Ross NW: Lepeophtheirus salmonis secretory/excretory products and their effects on Atlantic salmon immune gene regulation. Parasite Immunol 2007, 29(4):179-189.
  • [18]Fast MD, Muise DM, Easy RE, Ross NW, Johnson SC: The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar). Fish Shellfish Immunol 2006, 21(3):228-241.
  • [19]Fast MD, Ross NW, Johnson SC: Prostaglandin E-2 modulation of gene expression in an Atlantic salmon (Salmo salar) macrophage-like cell line (SHK-1). Dev Comp Immunol 2005, 29(11):951-963.
  • [20]Firth KJ, Johnson SC, Ross NW: Characterization of proteases in the skin mucus of Atlantic salmon (Salmo salar) infected with the salmon louse (Lepeophtheirus salmonis) and in whole-body louse homogenate. J Parasitol 2000, 86(6):1199-1205.
  • [21]Jones SRM: The occurrence and mechanisms of innate immunity against parasites in fish. Dev Comp Immunol 2001, 25(8–9):841-852.
  • [22]Jones SRM, Fast MD, Johnson SC, Groman DB: Differential rejection of salmon lice by pink and chum salmon: disease consequences and expression of proinflammatory genes. Dis Aquat Organ 2007, 75(3):229-238.
  • [23]Skugor S, Glover KA, Nilsen F, Krasonov A: Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics 2008, 9:498. BioMed Central Full Text
  • [24]Tadiso TM, Krasnov A, Skugor S, Afanasyev S, Hordvik I, Nilsen F: Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. BMC Genomics 2011, 12:141. BioMed Central Full Text
  • [25]Rolff J, Siva-Jothy MT: Invertebrate ecological immunology. Science 2003, 301(5632):472-475.
  • [26]Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan CC, Caspi RR: Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 2008, 205(4):799-810.
  • [27]Medzhitov R, Schneider DS, Soares MP: Disease tolerance as a defense strategy. Science 2012, 335(6071):936-941.
  • [28]Mustafa A, MacKinnon BM: Genetic variation in susceptibility of Atlantic salmon to the sea louse Caligus elongatus Nordmann, 1832. Can J Zool 1999, 77(8):1332-1335.
  • [29]Glover KA, Skaala O, Nilsen F, Olsen R, Teale AJ, Taggart JB: Differing susceptibility of anadromous brown trout (Salmo trutta L.) populations to salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) infection. ICES J Mar Sci 2003, 60(5):1139-1148.
  • [30]Glover KA, Hamre LA, Skaala O, Nilsen F: A comparison of sea louse (Lepeophtheirus salmonis) infection levels in farmed and wild Atlantic salmon (Salmo salar L.) stocks. Aquaculture 2004, 232(1–4):41-52.
  • [31]Gjerde B, Odegard J, Thorland I: Estimates of genetic variation in the susceptibility of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. Aquaculture 2011, 314(1–4):66-72.
  • [32]Jones CS, Lockyer AE, Verspoor E, Secombes CJ, Noble LR: Towards selective breeding of Atlantic salmon for sea louse resistance: approaches to identify trait markers. Pest Manag Sci 2002, 58(6):559-568.
  • [33]Braden LM, Barker DE, Koop BF, Jones SRM: Comparative defense-associated responses in salmon skin elicited by the ectoparasite Lepeophtheirus salmonis. Comp Biochem Physiol D 2012, 7(2):100-109.
  • [34]Ángeles Esteban M: An overview of the immunological defenses in fish skin. ISRN Immunology 2012, 2012:853470.
  • [35]Jantzen SG, Sanderson DS, von Schalburg KR, Yasuike M, Marass F, Koop BF: A 44 K microarray dataset of the changing transcriptome in developing Atlantic salmon (Salmo salar L.). BMC Res Notes 2011, 4:88. BioMed Central Full Text
  • [36]Chain FJJ, Ilieva D, Evans BJ: Single-species microarrays and comparative transcriptomics. PLoS One 2008, 3(9):e3279.
  • [37]Kültz D: Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 2005, 67:225-257.
  • [38]Sherr CJ, Roberts JM: Inhibitors of mammalian G(1) cyclin-dependent kinases. Genes Dev 1995, 9(10):1149-1163.
  • [39]Hannon GJ, Beach D: p15(INK4B) is a potential effector of TGF-β-induced cell cycle arrest. Nature 1994, 371(6494):257-261.
  • [40]Boot RG, Blommaart EFC, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts J: Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 2001, 276(9):6770-6778.
  • [41]Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA: Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004, 304(5677):1678-1682.
  • [42]Rich BE: IL-20: a new target for the treatment of inflammatory skin disease. Expert Opin Ther Targets 2003, 7(2):165-174.
  • [43]Beer HD, Bittner M, Niklaus G, Munding C, Max N, Goppelt A, Werner S: The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene 2005, 24(34):5269-5277.
  • [44]Nurminsky D, Magee C, Faverman L, Nurminskaya M: Regulation of chondrocyte differentiation by actin-severing protein adseverin. Dev Biol 2007, 302(2):427-437.
  • [45]Vairapandi M, Balliet AG, Hoffman B, Liebermann DA: GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 2002, 192(3):327-338.
  • [46]Fast MD, Ross NW, Mustafa A, Sims DE, Johnson SC, Conboy GA, Speare DJ, Johnson G, Burka JF: Susceptibility of rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon Oncorhynchus kisutch to experimental infection with sea lice Lepeophtheirus salmonis. Dis Aquat Organ 2002, 52(1):57-68.
  • [47]Mordue AJ, Birkett MA: A review of host finding behaviour in the parasitic sea louse, Lepeophtheirus salmonis (Caligidae: Copepoda). J Fish Dis 2009, 32(1):3-13.
  • [48]Bjørn PA, Finstad B: The physiological effects of salmon lice infection on sea trout post smolts. Nord J Freshwat Res 1997, 73:60-72.
  • [49]Jakob E, Sweeten T, Bennett W, Jones SRM: Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka. Dis Aquat Organ 2013, 106:217-227.
  • [50]Finstad B, Bjørn PA, Grimnes A, Hvidsten NA: Laboratory and field investigations of salmon lice Lepeophtheirus salmonis (Krøyer) infestation on Atlantic salmon (Salmo salar L.) post-smolts. Aquacult Res 2000, 31(11):795-803.
  • [51]Waite JC, Skokos D: Th17 response and inflammatory autoimmune diseases. Int J Inflamm 2012, 2012:819467.
  • [52]Trey JE, Kushner I: The acute phase response and the hematopoietic system: the role of cytokines. Crit Rev Oncol Hematol 1995, 21(1–3):1-18.
  • [53]Midwood KS, Williams LV, Schwarzbauer JE: Tissue repair and the dynamics of the extracellular matrix. Int J Biochem 2004, 36(6):1031-1037.
  • [54]Nemeth E, Ganz T: Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006, 26:323-342.
  • [55]Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T: IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 2004, 113(9):1271-1276.
  • [56]Wessling-Resnick M: Iron homeostasis and the inflammatory response. Annu Rev Nutr 2010, 30:105-122.
  • [57]Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003, 101(7):2461-2463.
  • [58]Shi JS, Camus AC: Hepcidins in amphibians and fishes: antimicrobial peptides or iron-regulatory hormones? Dev Comp Immunol 2006, 30(9):746-755.
  • [59]Robertson LS: Expression in Fish of Hepcidin, a Putative Antimicrobial Peptide and Iron Regulatory Hormone. In Proceedings of The Third Bilateral Conference Between the United States and Russia: Aquatic Animal Health: 12–20 July 2009; Sheperdstown, WV. USA: Michigan State University; 2011:284-292.
  • [60]Barnes AC, Trewin B, Snape N, Kvennefors ECE, Baiano JCF: Two hepcidin-like antimicrobial peptides in barramundi Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide. Fish Shellfish Immunol 2011, 31(2):350-357.
  • [61]Xu TJ, Sun YN, Shi G, Wang RX: Miiuy croaker hepcidin gene and comparative analyses reveal evidence for positive selection. PLoS One 2012, 7(4):e35449.
  • [62]Rodrigues PNS, Vazquez-Dorado S, Neves JV, Wilson JM: Dual function of fish hepcidin: response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev Comp Immunol 2006, 30(12):1156-1167.
  • [63]Hammer ND, Skaar EP: Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 2011, 65:129-147.
  • [64]Hood MI, Skaar EP: Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012, 10(8):525-537.
  • [65]Roy CN: Anemia of inflammation. ASH Education Program Book 2010, 2010(1):276-280.
  • [66]Easy RH, Ross NW: Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp Biochem Physiol D 2009, 4(3):159-167.
  • [67]Allen JE, Wynn TA: Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog 2011, 7(5):e1002003.
  • [68]Yoshida T, Nakamura H, Masutani H, Yodoi J: The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann N Y Acad Sci 2005, 1055:1-12.
  • [69]Chadzinska M, Baginski P, Kolaczkowska E, Savelkoul HFJ, Verburg-van Kemenade BML: Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology 2008, 125(4):601-610.
  • [70]Teles RMB, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, Komisopoulou E, Kelly-Scumpia K, Chun R, Iyer SS, Sarno EN, Rea TH, Hewison M, Adams JS, Popper SJ, Relman DA, Stenger S, Bloom BR, Cheng GH, Modlin RL: Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 2013, 339(6126):1448-1453.
  • [71]Bieniasz PD: Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 2004, 5(11):1109-1115.
  • [72]Jones S, Kim E, Dawe S: Experimental infections with Lepeophtheirus salmonis (Krøyer) on threespine sticklebacks, Gasterosteus aculeatus L., and juvenile Pacific salmon, Oncorhynchus spp. J Fish Dis 2006, 29(8):489-495.
  • [73]R Development Core Team: R: a language and environment for statistical computing. 2012. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ webcite
  • [74]Churchill GA: Fundamentals of experimental design for cDNA microarrays. Nat Genet 2002, 32:490-495.
  • [75]Koop BF, von Schalburg KR, Leong J, Walker N, Lieph R, Cooper GA, Robb A, Beetz-Sargent M, Holt RA, Moore R, Brahmbhatt S, Rosner J, Rexroad CE, McGowan CR, Davidson WS: A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics 2008, 9:545. BioMed Central Full Text
  • [76]Sutherland BJG, Jantzen SG, Yasuike M, Sanderson DS, Koop BF, Jones SRM: Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress. Mol Ecol 2012, 21(24):6000-6014.
  • [77]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
  • [78]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [79]VENNY. An interactive tool for comparing lists with Venn Diagrams [ http://bioinfogp.cnb.csic.es/tools/venny/index.html webcite]
  • [80]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [81]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002., 3(7) RESEARCH0034
  • [82]Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8(2):R19. BioMed Central Full Text
  • [83]Fast MD, Johnson SC, Jones SRM: Differential expression of the pro-inflammatory cytokines IL-1β-1, TNFα-1 and IL-8 in vaccinated pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon juveniles. Fish Shellfish Immun 2007, 22(4):403-407.
  文献评价指标  
  下载次数:0次 浏览次数:13次