| BMC Genomics | |
| Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity | |
| Philippe Prior1  Caitilyn Allen3  David Roche2  Gilles Cellier4  Tiffany Lowe3  Florent Ailloud4  | |
| [1] Département de Santé des Plantes et Environnement, (SPE) Inra, Paris, France;Institut de Génomique, Genoscope, Commissariat à l’Energie Atomique (CEA), Evry, Paris, France;Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA;Anses - Plant Health Laboratory, Saint-Pierre, F-97410, La Réunion, France | |
| 关键词: Host adaptation; Comparative genomics; Ralstonia solanacearum; | |
| Others : 1174036 DOI : 10.1186/s12864-015-1474-8 |
|
| received in 2014-11-26, accepted in 2015-03-20, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains.
Results
These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences.
Conclusions
This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.
【 授权许可】
2015 Ailloud et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150423031807236.pdf | 889KB | ||
| Figure 3. | 38KB | Image | |
| Figure 2. | 45KB | Image | |
| Figure 1. | 23KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Hayward AC: Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 1991, 29:65-87.
- [2]Denny T. Plant pathogenic Ralstonia species. In. Plant-associated bacteria. Samuel S. Gnanamanickam, editor: Springer Netherlands; 2006: p. 573–644.
- [3]Fegan M, Taghavi M, Sly, LI, Hayward AC. Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum. In. Bacterial Wilt Disease: Molecular and Ecological Aspects. Prior P, editor INRA; 1998: 19–33.
- [4]Guidot A, Coupat B, Fall S, Prior P, Bertolla F: Horizontal gene transfer between Ralstonia solanacearum strains detected by comparative genomic hybridization on microarrays. ISME J 2009, 3(5):549-62.
- [5]Remenant B, de Cambiaire JC, Cellier G, Jacobs JM, Mangenot S, Barbe V, et al.: Ralstonia syzygii, the blood disease bacterium and some Asian R. Solanacearum strains form a single genomic species despite divergent lifestyles. PLoS One 2011, 6(9):e24356.
- [6]Genin S, Denny TP: Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 2012, 50:67-89.
- [7]Peeters N, Guidot A, Vailleau F, Valls M: Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 2013, 14(7):651-62.
- [8]Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, et al.: Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol Plant Microbe Interact 2009, 22(5):538-50.
- [9]Lavie M, Shillington E, Eguiluz C, Grimsley N, Boucher C: PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum. Mol Plant Microbe Interact 2002, 15(10):1058-68.
- [10]Remigi P, Anisimova M, Guidot A, Genin S, Peeters N: Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytol 2011, 192(4):976-87.
- [11]Sole M, Popa C, Mith O, Sohn KH, Jones JD, Deslandes L, et al.: The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant Microbe Interact 2012, 25(7):941-53.
- [12]Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, et al.: Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 2010, 11:379. BioMed Central Full Text
- [13]Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S: Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 2013, 14:859. BioMed Central Full Text
- [14]Cellier G, Prior P: Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology 2010, 100(11):1250-61.
- [15]Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, et al.: Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl Environ Microbiol 2007, 73(21):6790-801.
- [16]Cellier G, Remenant B, Chiroleu F, Lefeuvre P, Prior P: Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II. Appl Environ Microbiol 2012, 78(7):2367-75.
- [17]Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, et al.: Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 2011, 7(7):e1002132.
- [18]Jalan N, Aritua V, Kumar D, Yu F, Jones JB, Graham JH, et al.: Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. J Bacteriol 2011, 193(22):6342-57.
- [19]Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, et al.: Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 2011, 193(19):5450-64.
- [20]Deloger M, El Karoui M, Petit MA: A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 2009, 191(1):91-9.
- [21]Bertolla F, Van Gijsegem F, Nesme X, Simonet P: Conditions for natural transformation of Ralstonia solanacearum. Appl Environ Microbiol 1997, 63(12):4965-8.
- [22]Widjaja I, Lassowskat I, Bethke G, Eschen-Lippold L, Long HH, Naumann K, et al.: A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. Plant J 2010, 61(2):249-58.
- [23]Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ: Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot Cell 2007, 6(1):73-83.
- [24]Hajri A, Pothier JF, Fischer-Le Saux M, Bonneau S, Poussier S, Boureau T, et al.: Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl Environ Microbiol 2012, 78(2):371-84.
- [25]Zumaquero A, Macho AP, Rufian JS, Beuzon CR: Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 2010, 192(17):4474-88.
- [26]Deslandes L, Genin S: Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol 2014, 20C:110-7.
- [27]Mukaihara T, Tamura N, Iwabuchi M: Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol Plant Microbe Interact 2010, 23(3):251-62.
- [28]Milling A, Meng F, Denny TP, Allen C: Interactions with hosts at cool temperatures, not cold tolerance, explain the unique epidemiology of Ralstonia solanacearum race 3 biovar 2. Phytopathology 2009, 99(10):1127-34.
- [29]Tseng TT, Tyler BM, Setubal JC: Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009, 9(Suppl 1):S2. BioMed Central Full Text
- [30]Expert D: Withholding and exchanging iron: Interactions Between Erwinia spp. and Their Plant Hosts. Annu Rev Phytopathol 1999, 37:307-34.
- [31]Ratledge C, Dover LG: Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 2000, 54:881-941.
- [32]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al.: Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326(5959):1509-12.
- [33]Mukaihara T, Tamura N: Identification of novel Ralstonia solanacearum type III effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology 2009, 155(Pt 7):2235-44.
- [34]Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, et al.: A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 2004, 279(52):54881-6.
- [35]Milling A, Babujee L, Allen C: Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 2011, 6(1):e15853.
- [36]Huillet E, Velge P, Vallaeys T, Pardon P: LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. FEMS Microbiol Lett 2006, 254(1):87-94.
- [37]Li Y, Peng Q, Selimi D, Wang Q, Charkowski AO, Chen X, et al.: The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl Environ Microbiol 2009, 75(5):1223-8.
- [38]Gueneron M, Timmers AC, Boucher C, Arlat M: Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp-secretion apparatus of Ralstonia solanacearum. Mol Microbiol 2000, 36(2):261-77.
- [39]Zuluaga AP, Puigvert M, Valls M: Novel plant inputs influencing Ralstonia solanacearum during infection. Front Microbiol 2013, 4:349.
- [40]Jacobs JM, Babujee L, Meng F, Milling A, Allen C: The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. MBio 2012, 3(4):e00114-12.
- [41]Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30(15):2114-20.
- [42]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-9.
- [43]Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, et al.: MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 2006, 34(1):53-65.
- [44]Xu J, Zheng HJ, Liu L, Pan ZC, Prior P, Tang B, et al.: Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. J Bacteriol 2011, 193(16):4261-2.
- [45]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al.: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
- [46]Roth AC, Gonnet GH, Dessimoz C: Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics 2008, 9:518. BioMed Central Full Text
- [47]Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999, 96(8):4285-8.
- [48]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-7.
- [49]Price MN, Dehal PS, Arkin AP: FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009, 26(7):1641-50.
- [50]David LA, Alm EJ: Rapid evolutionary innovation during an Archaean genetic expansion. Nature 2011, 469(7328):93-6.
PDF