期刊论文详细信息
BMC Genomics
A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines
Niclas Backström4  Scott V Edwards2  Geoffrey E Hill1  Qu Zhang3 
[1] Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36849, USA;Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA;Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA;Current affiliation: Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
关键词: Assembly;    Transcriptome;    Gene expression;    Mycoplasma gallisepticum;    House finch;   
Others  :  1217430
DOI  :  10.1186/1471-2164-15-305
 received in 2013-12-04, accepted in 2014-04-15,  发布年份 2014
PDF
【 摘 要 】

Background

With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen.

Results

We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response.

Conclusions

The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.

【 授权许可】

   
2014 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706131814934.pdf 1183KB PDF download
Figure 8. 80KB Image download
Figure 7. 55KB Image download
Figure 6. 79KB Image download
Figure 5. 25KB Image download
Figure 4. 107KB Image download
Figure 3. 65KB Image download
Figure 2. 67KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Clutton-Brock TH, Sheldon BC: Individuals and populations: the role of long-term, individual-based studies in ecology and evolutionary biology. Trends Ecol Evol 2010, 25:562-573.
  • [2]Ellegren H, Sheldon BC: Genetic basis of fitness differences in natural populations. Nature 2008, 452:169-175.
  • [3]Bonneaud C, Burnside J, Edwards SV: High-speed developments in avian genomics. Bioscience 2008, 58:587-595.
  • [4]Ekblom R, Galindo J: Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 2011, 107:1-15.
  • [5]Ellegren H, Smeds L, Burri R, Olason P, Backström N, Kawakami T, Nadachowska-Brzyska K, Qvarnström A, Uebbing S, Wolf JBW: The genomics of species differentiation in Ficedula flycatchers. Nature 2012, 491:756-760.
  • [6]Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Lander ES, Di Palma F, Lindblad-Toh K, Kingsley DM, Broad Institute Genome Sequencing Platform & Whole Genome Assembly Team: The genomic basis of adaptive evolution in threespine sticklebacks. Nature 2012, 484:55-61.
  • [7]THGSC: Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 2012, 487:94-98.
  • [8]Hill GE: A red bird in a brown bag: the function and evolution of colorful plumage in the house finch. New York: Oxford University Press; 2002.
  • [9]del Hoyo J, Elliot A, Christie DA: Handbook of the Birds of the World. Weavers to New World Warblers, Volume 15. Barcelona: Lynx Edicions; 2010.
  • [10]Elliott JJ, Arbib RS: Origin and status of the house finch in the eastern United States. Auk 1953, 70:31-37.
  • [11]The house finch (Carpodacus mexicanus). The birds of North America online [http://bna.birds.cornell.edu/bna.html/species/046 webcite]
  • [12]Ley DH, Berkhoff JE, McLaren JM: Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis 1996, 40:480-483.
  • [13]Hawley DM, Osnas EE, Dobson AP, Hochachka WM, Ley DH, Dhondt AA: Parallel patterns of increased virulence in a recently emerged wildlife pathogen. PLoS Biol 2013, 11:e1001570.
  • [14]Hochachka WM, Dhondt AA: Density-dependent decline of host abundance resulting from a new infectious disease. Proc Natl Acad Sci U S A 2000, 97:5303-5306.
  • [15]Dhondt AA, Tessglia DL, Slothower RL: Epidemic mycoplasmal conjunctivitis in house finches from eastern North America. J Wildl Dis 1998, 34:265-280.
  • [16]The house finch disease survey [http://www.birds.cornell.edu/hofi/news.html webcite]
  • [17]Bonneaud C, Balenger SL, Russell AF, Zhang J, Hill GE, Edwards SV: Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proc Natl Acad Sci U S A 2011, 108(19):7866-7871.
  • [18]Hill GE: Plumage coloration is a sexually selected indicator of male quality. Nature 1991, 350:337-339.
  • [19]Badyaev AV, Hill GE: The evolution of sexual dimorphism in the house finch. I. Population divergence in morphological covariance structure. Evolution 2000, 54:1784-1794.
  • [20]Badyaev AV, Hill GE, Beck ML, Dervan AA, Duckworth RA, McGraw KJ, Nolan PM, Whittingham LA: Sex-biased hatching order and adaptive population divergence in a passerine bird. Science 2002, 295:316-318.
  • [21]Hill GE, Farmer KL: Carotenoid-based plumage coloration predicts resistance to a novel parasite in the house finch. Naturwissenschaften 2005, 92:30-34.
  • [22]Hill GE, Farmer KL, Beck ML: The effect of mycoplasmosis on carotenoid plumage coloration in male house finches. J Exp Biol 2004, 207:2095-2099.
  • [23]Wang Z, Farmer K, Hill GE, Edwards SV: A cDNA macroarray approach to parasite-induced gene expression changes in a songbird host: genetic response of house finches to experimental infection by Mycoplasma gallisepticum. Mol Ecol 2006, 15:1263-1273.
  • [24]Bonneaud C, Balenger SL, Zhang J, Edwards SV, Hill GE: Innate immunity and the evolution of resistance to an emerging infectious disease in a wild bird. Mol Ecol 2012, 21:2628-2639.
  • [25]Backström N, Shipilina D, Blom MPK, Edwards SV: Cis-regulatory sequence variation and association with Mycoplasma load in natural populations of the house finch (Carpodacus mexicanus). Ecol Evol 2013, 3:655-666.
  • [26]Wang Z, Baker AJ, Hill GE, Edwards SV: Reconciling actual and infected population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution 2003, 37:2852-2864.
  • [27]Hawley DM, Fleischer RC: Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS One 2012, 7(1):e30222.
  • [28]Hawley DM, Hanley D, Dhondt AA, Lovette IJ: Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Ecol 2006, 15:263-275.
  • [29]Alcaide M, Bonneaud C, Backström N, Liu M, Edwards SV: Geographic and diachronic analysis of Toll-like receptor variation in an invasive species, the house finch (Haemorhous mexicanus). [In Prep]
  • [30]Alcaide M, Edwards SV: Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol 2011, 28:1703-1715.
  • [31]Backström N, Zhang Q, Edwards SV: Evidence from a house finch (Haemorhous mexicanus) spleen transcriptome for adaptive evolution and biased gene conversion in passerine birds. Mol Biol Evol 2013, 30:1046-1050.
  • [32]Davis AK, Hood WR, Hill GE: Prevalence of blood parasites in eastern versus western house finches: are eastern birds resistant to infection? Ecohealth 2013. In Press
  • [33]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12:656-664.
  • [34]Ekblom R, Balakrishnan CN, Burke T, Slate J: Digital gene expression analysis of the zebra finch genome. BMC Genomics 2010, 11:219. BioMed Central Full Text
  • [35]Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 2007, 35(Web Server issue):W345-W349.
  • [36]Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 2011, 12:323. BioMed Central Full Text
  • [37]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
  • [38]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [39]Watterson GA: On the number of segregating sites in genetic models without recombination. Theor Pop Biol 1975, 7:256-276.
  • [40]Phillips T: Regulation of transcription and gene expression in eukaryotes. Nat Edu 2008, 1(1):199.
  • [41]Hawley DM, Briggs J, Dhondt AA, Lovette IJ: Reconciling molecular signatures across markers: mitochondrial DNA confirms founder effect in invasive North American house finches (Carpodacus mexicanus). Cons Genet 2008, 9:637-643.
  • [42]Peterson MP, Whittaker DJ, Ambreth S, Sureshchandra S, Buechlein A, Podicheti R, Choi J-H, Lai Z, Mockatis K, Colbourne J, Tang H, Ketterson ED: De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis) - genomic tools for an ecological model system. BMC Genomics 2012, 13:305. BioMed Central Full Text
  • [43]Santure AW, Gratten J, Mossman JA, Sheldon BC, Slate J: Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing. BMC Genomics 2011, 12:283. BioMed Central Full Text
  • [44]Wang B, Ekblom R, Castoe TA, Jones EP, Kozma R, Bongcam-Rudloff E, Pollock DD, Hoglund J: Transcriptome sequencing of black grouse (Tetrao tetrix) for immune gene discovery and microsatellite development. Open Biol 2012, 2:120054.
  • [45]John JL: The avian spleen: a neglected organ. Quart Rev Biol 1994, 69:327-351.
  • [46]Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP: Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol 2008, 6:e6. BioMed Central Full Text
  • [47]Hill GE, Fu X, Balenger S, McGraw KJ, Giraudeau M, Hood WR: Changes in concentrations of circulating heat-shock proteins in House Finches in response to different environmental stressors. J Field Ornithol 2013, 84:416-424.
  • [48]Felsenstein J: Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci? Mol Biol Evol 2001, 23:691-700.
  • [49]Carling MD, Brumfield RT: Gene sampling strategies for multi-locus population estimates of genetic diversity. PLoS One 2007, 2:e160.
  • [50]Ohta T: The nearly neutral theory of molecular evolution. Ann Rev Ecol Evol Syst 1992, 23:263-286.
  • [51]Nei M: Bottlenecks, genetic polymorphism and speciation. Genetics 2005, 170:1-4.
  • [52]Gemayel R, Vinces MD, Legendre M, Verstrepen KJ: Variable tandem repeats accelerate evolution of coding and regulatory sequences. Ann Rev Genet 2010, 44:445-477.
  • [53]Alcaide M, Bonneaud C, Backström N, Liu M, Edwards SV: Geographic and diachronic analysis of Toll-like receptor variation in an invasive species, the house finch (Carpodacus mexicanus). 2011. [Manuscript In Preparation]
  • [54]Carroll SB: Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008, 134:25-36.
  • [55]Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CP: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
  • [56]Kim H, Klein R, Majewski J, Ott J: Estimating rates of alternative splicing in mammals and invertebrates. Nat Genet 2004, 36:915-916.
  • [57]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 2008, 5:621-628.
  • [58]Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003, 302:2141-2144.
  • [59]Kim E, Magen A, Ast G: Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 2007, 35:125-131.
  • [60]Harrington ED, Boue S, Valcarcel J, Reich JG, Bork P: A reply to: Estimating rates of alternative splicing in mammals and invertebrates by Kim et al. Nat Genet 2004, 36:916-917.
  • [61]Brett D, Pospisil H, Valcárcel J, Reich J, Bork P: Alternative splicing and genome complexity. Nature 2002, 30:29-30.
  • [62]Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R, Kim T, Misquitta-Ali CM, Wilson MD, Kim PM, Odom DT, Frey BJ, Blencowe BJ: The evolutionary landscape of alternative splicing in vertebrate species. Science 2012, 338:1587-1593.
  • [63]Vijay N, Poelstra JW, Kunstner A, Wolf JB: Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 2013, 22:620-634.
  • [64]Blencowe BJ: Alternative splicing: new insights from global analyses. Cell 2006, 126:37-47.
  • [65]Cusack BP, Wolfe KH: Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons. Mol Biol Evol 2005, 22:2198-2208.
  • [66]Nurtdinov RN, Neverov AD, Favorov AV, Mironov AA, Gelfand MS: Conserved and species-specific alternative splicing in mammalian genomes. BMC Evol Biol 2007, 7:249. BioMed Central Full Text
  • [67]Chen FC, Pan CL, Lin HY: Independent effects of alternative splicing and structural constraint on the evolution of mammalian coding exons. Mol Biol Evol 2012, 29:187-193.
  • [68]Nolan PM, Hill GE, Stoehr AM: Sex, size, and plumage redness predict house finch survival in an epidemic. Proc Roy Soc B 1998, 265:961-965.
  • [69]Smeds L, Künstner A: ConDeTri - a content dependent read trimmer for Illumina data. PLoS One 2011, 6:e26314.
  • [70]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 2011, 29:644-652.
  • [71]Frith MC, Pheasant M, Mattick JS: The amazing complexity of the human transcriptome. Eur J Hum Genet 2005, 13:894-897.
  • [72]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, et al.: Ensembl 2012. Nucleic Acids Res 2012, 40(Database issue):D84-D90.
  • [73]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995, 57:12.
  • [74]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Meth 2012, 9:357-359.
  • [75]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [76]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3:418-426.
  • [77]Holsinger KE, Weir BS: Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat Rev Genet 2009, 10:639-650.
  • [78]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25-29.
  • [79]Kasprzyk A: BioMart - driving a paradigm change in biological data management. Database 2011, 2011:bar049.
  • [80]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22:1600-1607.
  文献评价指标  
  下载次数:40次 浏览次数:2次