BMC Genomics | |
Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions | |
Sergio Angeli2  Ernst A Wimmer6  Stefan Schütz7  Mario Stanke5  Joachim Schachtner3  Lennart Opitz4  Lizzy Gerischer5  Jörg Kahnt1  Georg Oberhofer6  Stefan Dippel7  | |
[1] MPI for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, Marburg D-35043, Germany;Present address: Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano 39100, Italy;Department of Biology - Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg 35032, Germany;Functional Genomics Center Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland;University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Straße 47, Greifswald D-17487, Germany;Department of Developmental Biology, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany;Department of Forest Zoology and Forest Conservation, Georg-August-University Goettingen, Buesgen-Institute, Buesgenweg 3, Goettingen 37077, Germany | |
关键词: Tribolium castaneum; Transcriptome; Proteome; Olfaction; Odorant binding protein (OBP); Gustation; Chemosensory protein (CSP); | |
Others : 1125669 DOI : 10.1186/1471-2164-15-1141 |
|
received in 2014-08-05, accepted in 2014-12-09, 发布年份 2014 | |
【 摘 要 】
Background
Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs).
Results
To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae.
Conclusions
Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules.
【 授权许可】
2014 Dippel et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150217023619818.pdf | 2825KB | download | |
Figure 4. | 225KB | Image | download |
Figure 3. | 261KB | Image | download |
Figure 2. | 87KB | Image | download |
Figure 1. | 82KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Sokoloff A: The Genetics of Tribolium and Related Species. Volume 1. New York: Academic Press; 1966.
- [2]Bucher G, Scholten J, Klingler M: Parental RNAi in Tribolium (Coleoptera). Curr Biol CB 2002, 12:R85-R86.
- [3]Tomoyasu Y, Denell RE: Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 2004, 214:575-578.
- [4]Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, Klingler M, Bucher G, Brown SJ: Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 2009, 7:73. BioMed Central Full Text
- [5]Schinko JB, Weber M, Viktorinova I, Kiupakis A, Averof M, Klingler M, Wimmer EA, Bucher G: Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biol 2010, 10:53. BioMed Central Full Text
- [6]Schinko JB, Hillebrand K, Bucher G: Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev Genes Evol 2012, 222:287-298.
- [7]Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Friedrich M, Grimmelikhuijzen CJP, Klingler M, Lorenzen M, Richards S, Roth S, Schröder R, Tautz D, Zdobnov EM, Muzny D, Gibbs RA, Weinstock GM, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, et al.: The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452:949-955.
- [8]Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, Lorenzen MD, Butcher S, Manak JR, Brown SJ: BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res 2010, 38(Database issue):D437-D442.
- [9]de Santis F, François M-C, Merlin C, Pelletier J, Maïbèche-Coisné M, Conti E, Jacquin-Joly E: Molecular Cloning and in Situ Expression Patterns of Two New Pheromone-Binding Proteins from the Corn Stemborer Sesamia nonagrioides. J Chem Ecol 2006, 32:1703-1717.
- [10]Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P: Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 1999, 262:745-754.
- [11]Pelosi P, Zhou J-J, Ban LP, Calvello M: Soluble proteins in insect chemical communication. Cell Mol Life Sci CMLS 2006, 63:1658-1676.
- [12]Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E: Analysis of the Insect OS-D-Like Gene Family. J Chem Ecol 2004, 30:889-911.
- [13]Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field LM, Zhou J-J: Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Mol Biol 2012, 21:41-48.
- [14]Leal WS: Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu Rev Entomol 2013, 58:373-391.
- [15]Steinbrecht RA: Odorant-binding proteins: expression and function. Ann N Y Acad Sci 1998, 855:323-332.
- [16]Vogt RG, Riddiford LM: Pheromone binding and inactivation by moth antennae. Nature 1981, 293:161-163.
- [17]Vieira FG, Rozas J: Comparative Genomics of the Odorant-Binding and Chemosensory Protein Gene Families across the Arthropoda: Origin and Evolutionary History of the Chemosensory System. Genome Biol Evol 2011, 3:476-490.
- [18]Sandler BH, Nikonova L, Leal WS, Clardy J: Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 2000, 7:143-151.
- [19]Briand L, Swasdipan N, Nespoulous C, Bézirard V, Blon F, Huet J-C, Ebert P, Penollet J-C: Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem FEBS 2002, 269:4586-4596.
- [20]Scaloni A, Monti M, Angeli S, Pelosi P: Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun 1999, 266:386-391.
- [21]Foret S, Maleszka R: Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 2006, 16:1404-1413.
- [22]Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA: Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 2002, 12:1357-1369.
- [23]Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C: Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol 2012, 42:41-50.
- [24]Gu S-H, Wang S-Y, Zhang X-Y, Ji P, Liu J-T, Wang G-R, Wu K-M, Guo Y-Y, Zhou J-J, Zhang Y-J: Functional Characterizations of Chemosensory Proteins of the Alfalfa Plant Bug Adelphocoris lineolatus Indicate Their Involvement in Host Recognition. PLoS One 2012, 7:e42871.
- [25]Ozaki M: Ant Nestmate and Non-Nestmate Discrimination by a Chemosensory Sensillum. Science 2005, 309:311-314.
- [26]Jacquin-Joly E, Vogt RG, François M-C, Meillour PN-L: Functional and Expression Pattern Analysis of Chemosensory Proteins Expressed in Antennae and Pheromonal Gland of Mamestra brassicae. Chem Senses 2001, 26:833-844.
- [27]Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F: Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 2013, 14:198. BioMed Central Full Text
- [28]González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R: The major antennal chemosensory protein of red imported fire ant workers. Insect Mol Biol 2009, 18:395-404.
- [29]Liu X, Luo Q, Zhong G, Rizwan-Ul-Haq M, Hu M: Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Biochem (Tokyo) 2010, 148:189-200.
- [30]Forstner M, Breer H, Krieger J: A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 2009, 5:745-757.
- [31]Grosse-Wilde E, Gohl T, Bouché E, Breer H, Krieger J: Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci 2007, 25:2364-2373.
- [32]Grosse-Wilde E, Svatos A, Krieger J: A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 2006, 31:547-555.
- [33]Hallem EA, Ho MG, Carlson JR: The molecular basis of odor coding in the Drosophila antenna. Cell 2004, 117:965-979.
- [34]Syed Z, Ishida Y, Taylor K, Kimbrell DA, Leal WS: Pheromone reception in fruit flies expressing a moth’s odorant receptor. Proc Natl Acad Sci U S A 2006, 103:16538-16543.
- [35]Xu P, Atkinson R, Jones DNM, Smith DP: Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 2005, 45:193-200.
- [36]Arya GH, Weber AL, Wang P, Magwire MM, Negron YLS, Mackay TFC, Anholt RRH: Natural Variation, Functional Pleiotropy and Transcriptional Contexts of Odorant Binding Protein Genes in Drosophila melanogaster. Genetics 2010, 186:1475-1485.
- [37]Krieger MJB, Ross KG: Molecular evolutionary analyses of the odorant-binding protein gene Gp-9 in fire ants and other Solenopsis species. Mol Biol Evol 2005, 22:2090-2103.
- [38]Swarup S, Williams TI, Anholt RRH: Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 2011, 10:648-657.
- [39]Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E, Guerin PM, Iatrou K, Justice RW, Kröber T, Marinotti O, Tsitoura P, Woods DF, Walter MF: The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) Mediates Indole Recognition in the Antennae of Female Mosquitoes. PLoS One 2010, 5:e9471.
- [40]Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS: Knockdown of a Mosquito Odorant-binding Protein Involved in the Sensitive Detection of Oviposition Attractants. J Chem Ecol 2010, 36:245-248.
- [41]Gomez-Diaz C, Reina JH, Cambillau C, Benton R: Ligands for Pheromone-Sensing Neurons Are Not Conformationally Activated Odorant Binding Proteins. PLoS Biol 2013, 11:e1001546.
- [42]Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ: Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 2011, 12:271. BioMed Central Full Text
- [43]Farhadian SF, Suárez-Fariñas M, Cho CE, Pellegrino M, Vosshall LB: Post-fasting olfactory, transcriptional, and feeding responses in Drosophila. Physiol Behav 2012, 105:544-553.
- [44]Pelletier J, Leal WS: Genome Analysis and Expression Patterns of Odorant-Binding Proteins from the Southern House Mosquito Culex pipiens quinquefasciatus. PLoS One 2009, 4:e6237.
- [45]Zhang Y-N, Jin J-Y, Jin R, Xia Y-H, Zhou J-J, Deng J-Y, Dong S-L: Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker). PLoS One 2013, 8:e69715.
- [46]Zheng W, Peng W, Zhu C, Zhang Q, Saccone G, Zhang H: Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis. Int J Mol Sci 2013, 14:14936-14949.
- [47]Gong D-P, Zhang H, Zhao P, Lin Y, Xia Q-Y, Xiang Z-H: Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol 2007, 37:266-277.
- [48]Zhou J-J, Kan Y, Antoniw J, Pickett JA, Field LM: Genome and EST Analyses and Expression of a Gene Family with Putative Functions in Insect Chemoreception. Chem Senses 2006, 31:453-465.
- [49]Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, Marca GL, Niccolini A, Felicioli A, Moneti G, Pelosi P: Odorant-Binding Proteins and Chemosensory Proteins in Pheromone Detection and Release in the Silkmoth Bombyx mori. Chem Senses 2011, 36:335-344.
- [50]Sun Y-L, Huang L-Q, Pelosi P, Wang C-Z: Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species. PLoS One 2012, 7:e30040.
- [51]Maleszka J, Forêt S, Saint R, Maleszka R: RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 2007, 217:189-196.
- [52]Levy F, Bulet P, Ehret-Sabatier L: Proteomic Analysis of the Systemic Immune Response of Drosophila. Mol Cell Proteomics 2004, 3:156-166.
- [53]Nomura A, Kawasaki K, Kubo T, Natori S: Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol 1992, 36:391-398.
- [54]Schütz S, Weißbecker B, Schroth P, Schöning MJ: Linkage of Inanimate Structures to Biological Systems — Smart Materials in Biological Micro- and Nanosystems. In Smart Mater. Edited by Hoffmann K-H. Heidelberg: Springer Berlin; 2001:149-157.
- [55]Di Pietrantonio F, Cannatà D, Benetti M, Verona E, Varriale A, Staiano M, D’Auria S: Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens Bioelectron 2013, 41:328-334.
- [56]Schütz S, Weißbecker B, Koch UT, Hummel HE: Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens Bioelectron 1999, 14:221-228.
- [57]Johne AB, Weissbecker B, Schütz S: Approaching risk assessment of complex disease development in horse chestnut trees: a chemical ecologist’s perspective. J Appl Entomol 2008, 132:349-359.
- [58]Zhou J-J, Field LM, He XL: Insect Odorant-Binding Proteins: Do They Offer an Alternative Pest Control Strategy? Outlooks Pest Manag 2010, 21:31-34.
- [59]Pannure A, Mutthuraju GP, Imran S: The sense of smell in insects: a target for pest management? - A review. Curr Biot 2012, 6:399-419.
- [60]Abdel-Sattar E, Zaitoun AA, Farag MA, Gayed SHE, Harraz FMH: Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum. Nat Prod Res 2010, 24:226-235.
- [61]Andreev D, Kreitman M, Phillips TW, Beeman RW, ffrench-Constant RH: Multiple origins of cyclodiene insecticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae). J Mol Evol 1999, 48:615-624.
- [62]da Affonso RS, Affonso RS, Guimarães AP, Oliveira AA, Slana GBC, França TCC: Applications of molecular modeling in the design of new insect repellents targeting the odorant binding protein of Anopheles gambiae. J Braz Chem Soc 2013, 24:473-482.
- [63]Ridley AW, Hereward JP, Daglish GJ, Raghu S, Collins PJ, Walter GH: The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol Ecol 2011, 20:1635-1646.
- [64]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9:357-359.
- [65]Forêt S, Wanner KW, Maleszka R: Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Mol Biol 2007, 37:19-28.
- [66]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
- [67]Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JGR, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E: The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002, 12:1611-1618.
- [68]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
- [69]Patel RK, Jain M: NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. PLoS One 2012, 7:e30619.
- [70]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
- [71]Stanke M, Diekhans M, Baertsch R, Haussler D: Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24:637-644.
- [72]iBeetle consortiumhttp://ibeetle.uni-Goettingen.de webcite
- [73]Stanke M, Bucher G, Klingler M, iBeetle genome browserhttp://bioinf.uni-Greifswald.de/tcas/ webcite
- [74]Kent WJ: BLAT—The BLAST-Like Alignment Tool. Genome Res 2002, 12:656-664.
- [75]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
- [76]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-D229.
- [77]Pavlidis P, Noble WS: Matrix2png: a utility for visualizing matrix data. Bioinformatics 2003, 19:295-296.
- [78]Inkscapehttp://Www.inkscape.org webcite
- [79]R: A Language and Environment for Statistical Computing. [http://www.R-project.org webcite]
- [80]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
- [81]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
- [82]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511-518.
- [83]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinforma Oxf Engl 2006, 22:2688-2690.
- [84]Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, Filippov A, Holloway E, Klebanov A, Kryvych N, Kurbatova N, Kurnosov P, Malone J, Melnichuk O, Petryszak R, Pultsin N, Rustici G, Tikhonov A, Travillian RS, Williams E, Zorin A, Parkinson H, Brazma A: Gene Expression Atlas update–a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res 2011, 40:D1077-D1081.
- [85]Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23:127-128.
- [86]Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK: The crystal structure of an odorant binding protein from Anopheles gambiae: Evidence for a common ligand release mechanism. Biochem Biophys Res Commun 2006, 339:157-164.
- [87]Zhou J-J, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM: Characterisation of Bombyx mori Odorant-binding Proteins Reveals that a General Odorant-binding Protein Discriminates Between Sex Pheromone Components. J Mol Biol 2009, 389:529-545.
- [88]Vieira FG, Forêt S, He X, Rozas J, Field LM, Zhou J-J: Unique Features of Odorant-Binding Proteins of the Parasitoid Wasp Nasonia vitripennis Revealed by Genome Annotation and Comparative Analyses. PLoS One 2012, 7:e43034.
- [89]Zhou J-J: Chapter Ten - Odorant-Binding Proteins in Insects. In Vitam Horm. Volume Volume 83. Edited by Litwack G. Amsterdam: Academic Press; 2010:241-272. [Pheromones]
- [90]Eirín-López JM, Rebordinos L, Rooney AP, Rozas J: The Birth-and-Death Evolution of Multigene Families Revisited. In Genome Dyn. Volume 7. Edited by Garrido-Ramos MA. Basel: S. KARGER AG; 2012:170-196.
- [91]Zhou J-J, Huang W, Zhang G-A, Pickett JA, Field LM: “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 2004, 327:117-129.
- [92]Dreyer D, Vitt H, Dippel S, Goetz B, El Jundi B, Kollmann M, Huetteroth W, Schachtner J: 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity. Front Syst Neurosci 2010, 4:3.
- [93]Alabi T, Marion-Poll F, Danho M, Mazzucchelli GD, De Pauw E, Haubruge E, Francis F: Identification of taste receptors and proteomic characterization of the antenna and legs of Tribolium brevicornis, a stored food product pest. Insect Mol Biol 2013, 23:1-12.
- [94]Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S: The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol 2008, 38:387-397.
- [95]Li J, Lehmann S, Weißbecker B, Ojeda Naharros I, Schütz S, Joop G, Wimmer EA: Odoriferous Defensive Stink Gland Transcriptome to Identify Novel Genes Necessary for Quinone Synthesis in the Red Flour Beetle, Tribolium castaneum. PLoS Genet 2013, 9:e1003596.
- [96]Xu PX, Zwiebel LJ, Smith DP: Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 2003, 12:549-560.
- [97]Gong D-P, Zhang H-J, Zhao P, Xia Q-Y, Xiang Z-H: The Odorant Binding Protein Gene Family from the Genome of Silkworm, Bombyx mori. BMC Genomics 2009, 10:332. BioMed Central Full Text
- [98]Vieira FG, Sánchez-Gracia A, Rozas J: Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 2007, 8:R235. BioMed Central Full Text
- [99]Librado P, Rozas J: Uncovering the functional constraints underlying the genomic organisation of the Odorant-Binding Protein genes. Genome Biol Evol 2013, 5:2096-2108.
- [100]Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T, Alenius M: Combinatorial Activation and Repression by Seven Transcription Factors Specify Drosophila Odorant Receptor Expression. PLoS Biol 2012, 10:e1001280.
- [101]Leal WS, Nikonova L, Peng G: Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 1999, 464:85-90.
- [102]Hungate EA, Earley EJ, Boussy IA, Turissini DA, Ting C-T, Moran JR, Wu M-L, Wu C-I, Jones CD: A Locus in Drosophila sechellia Affecting Tolerance of a Host Plant Toxin. Genetics 2013, 195:1063-1075.
- [103]Qiao H-L, Deng P-Y, Li D-D, Chen M, Jiao Z-J, Liu Z-C, Zhang Y-Z, Kan Y-C: Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori. J Insect Physiol 2013, 59:667-675.
- [104]Ju Q, Li X, Jiang X-J, Qu M-J, Guo X-Q, Han Z-J, Li F: Transcriptome and Tissue-Specific Expression Analysis of Obp and Csp Genes in the Dark Black Chafer. Arch Insect Biochem Physiol 2014, 87:177-200.
- [105]Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, della Torre A, Iatrou K, Zhou J-J, Krieger J, Pelosi P: Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 2010, 68:1799-1813.
- [106]Schultze A, Pregitzer P, Walter MF, Woods DF, Marinotti O, Breer H, Krieger J: The Co-Expression Pattern of Odorant Binding Proteins and Olfactory Receptors Identify Distinct Trichoid Sensilla on the Antenna of the Malaria Mosquito Anopheles gambiae. PLoS One 2013, 8:e69412.
- [107]Contreras E, Rausell C, Real MD: Proteome Response of Tribolium castaneum Larvae to Bacillus thuringiensis Toxin Producing Strains. PLoS One 2013, 8:e55330.
- [108]Xu J, Baulding J, Palli SR: Proteomics of Tribolium castaneum seminal fluid proteins: Identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J Proteomics 2013, 78:83-93.
- [109]Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC: Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 2008, 38:176-189.
- [110]Ban L, Napolitano E, Serra A, Zhou X, Iovinella I, Pelosi P: Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria. Biochem Biophys Res Commun 2013, 437:620-624.
- [111]Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon J-F, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B: Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 2014, 85:137-151.
- [112]Xuan N, Guo X, Xie H-Y, Lou Q-N, Lu X-B, Liu G-X, Picimbon J-F: Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 2014. (doi: 10.1111/1744-7917.12116)
- [113]Liu Y-L, Guo H, Huang L-Q, Pelosi P, Wang C-Z: Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J Exp Biol 2014, 217(Pt 10):1821-1826.
- [114]Findlay GD, Yi X, MacCoss MJ, Swanson WJ: Proteomics Reveals Novel Drosophila Seminal Fluid Proteins Transferred at Mating. PLoS Biol 2008, 6:e178.
- [115]GEO accession. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63162 webcite
- [116]endmemohttp://www.endmemo.com/bio/proie.php webcite
- [117]jpredhttp://www.compbio.dundee.ac.uk/www-jpred/index.html webcite