期刊论文详细信息
BMC Genomics
High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells
Hendrik Jan Ankersmit6  Michael Mildner5  Walter Klepetko6  Mariann Gyöngyösi2  Christian Gabriel4  Matthias Zimmermann6  Andreas Mitterbauer6  Mohammad Mahdi Kasiri6  Adolf Ellinger7  Robin Ristl3  Rudolf Seemann1  Lucian Beer6 
[1] University Hospital of Craniomaxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria;Department of Cardiology, Medical University Vienna, Vienna, Austria;Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria;Austrian Cluster for Tissue Regeneration, Linz, Austria;Department of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University Vienna, Lazarettgasse 14, 1090 Vienna, Austria;Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
关键词: Ionizing radiation;    p53;    Mononuclear leukocytes;    Apoptosis;    Messenger RNA;    MicroRNAs;    Microarray;   
Others  :  1139517
DOI  :  10.1186/1471-2164-15-814
 received in 2014-05-05, accepted in 2014-09-22,  发布年份 2014
PDF
【 摘 要 】

Background

High dose ionizing radiation (IR) induces potent toxic cell effects mediated by either direct DNA damage or the production of reactive oxygen species (ROS). IR-induced modulations in multiple biological processes have been proposed to be partly regulated by radiosensitive microRNA (miRNA). In order to gain new insights into the role of miRNAs in the regulation of biological processes after IR, we have investigated changes in mRNA and miRNA expression after high dose IR.

Results

IR induced changes in the mRNA and miRNA profiles of human peripheral blood mononuclear cells (PBMCs). When comparing non-irradiated and irradiated samples, we detected a time-dependent increase in differentially expressed mRNAs and miRNAs, with the highest differences detectable 20 hours after exposure. Gene ontology analysis revealed that very early events (up to 4 hours) after irradiation were specifically associated with p53 signaling and apoptotic pathways, whereas a large number of diverse cellular processes were deregulated after 20 hours. Transcription factor analysis of all up-regulated genes confirmed the importance of p53 in the early post-irradiation phase. When analyzing miRNA expression, we found 177 miRNAs that were significantly regulated in the late post-irradiation phase. Integrating miRNA and target gene expression data, we found a significant negative correlation between miRNA-mRNA and identified hepatic leukemia factor (HLF) as a transcription factor down-regulated in the response to IR. These regulated miRNAs and the HLF target genes were involved in modulating radio-responsive pathways, such as apoptosis, the MAKP signaling pathway, endocytosis, and cytokine-cytokine interactions.

Conclusion

Using a large dataset of mRNA and miRNA expression profiles, we describe the interplay of mRNAs and miRNAs in the regulation of gene expression in response to IR at a posttranscriptional level and their involvement in the modulation of radiation-induced biological pathways.

【 授权许可】

   
2014 Beer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321163504997.pdf 2792KB PDF download
Figure 10. 42KB Image download
Figure 9. 89KB Image download
Figure 8. 71KB Image download
Figure 7. 48KB Image download
Figure 6. 122KB Image download
Figure 5. 55KB Image download
Figure 4. 55KB Image download
Figure 3. 28KB Image download
Figure 2. 78KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Spitz DR, Azzam EI, Li JJ, Gius D: Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 2004, 23(3–4):311-322.
  • [2]Chaudhry MA: Bystander effect: biological endpoints and microarray analysis. Mutat Res 2006, 597(1–2):98-112.
  • [3]Wyrobek AJ, Manohar CF, Krishnan VV, Nelson DO, Furtado MR, Bhattacharya MS, Marchetti F, Coleman MA: Low dose radiation response curves, networks and pathways in human lymphoblastoid cells exposed from 1 to 10 cGy of acute gamma radiation. Mutat Res 2011, 722(2):119-130.
  • [4]Girardi C, De Pitta C, Casara S, Sales G, Lanfranchi G, Celotti L, Mognato M: Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One 2012, 7(2):e31293.
  • [5]Knops K, Boldt S, Wolkenhauer O, Kriehuber R: Gene expression in low- and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry. Radiat Res 2012, 178(4):304-312.
  • [6]Mezentsev A, Amundson SA: Global gene expression responses to low- or high-dose radiation in a human three-dimensional tissue model. Radiat Res 2011, 175(6):677-688.
  • [7]Amundson SA, Lee RA, Koch-Paiz CA, Bittner ML, Meltzer P, Trent JM, Fornace AJ Jr: Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 2003, 1(6):445-452.
  • [8]Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, Tan Y, Wang SX, Blakely WF, Coleman M, Peterson L, Wyrobek AJ: DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS One 2012, 7(11):e48619.
  • [9]Turtoi A, Brown I, Oskamp D, Schneeweiss FH: Early gene expression in human lymphocytes after gamma-irradiation-a genetic pattern with potential for biodosimetry. Int J Radiat Biol 2008, 84(5):375-387.
  • [10]Manning G, Kabacik S, Finnon P, Bouffler S, Badie C: High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 2013, 89(7):512-522.
  • [11]Turtoi A, Brown I, Schlager M, Schneeweiss FH: Gene expression profile of human lymphocytes exposed to (211)At alpha particles. Radiat Res 2010, 174(2):125-136.
  • [12]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [13]Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB: Common features of microRNA target prediction tools. Front Genet 2014, 5:23.
  • [14]Fabian MR, Sonenberg N: The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012, 19(6):586-593.
  • [15]Fujiwara T, Yada T: miRNA-target prediction based on transcriptional regulation. BMC Genomics 2013, 14(Suppl 2):S3. BioMed Central Full Text
  • [16]Crosby ME, Kulshreshtha R, Ivan M, Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 2009, 69(3):1221-1229.
  • [17]Joly-Tonetti N, Vinuelas J, Gandrillon O, Lamartine J: Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation. BMC Genomics 2013, 14:184. BioMed Central Full Text
  • [18]Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, Smilenov LB: Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys 2011, 80(2):549-557.
  • [19]Josson S, Sung SY, Lao K, Chung LW, Johnstone PA: Radiation modulation of microRNA in prostate cancer cell lines. Prostate 2008, 68(15):1599-1606.
  • [20]Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M: Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001, 29(4):365-371.
  • [21]Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB: Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 2002, 99(7):4465-4470.
  • [22]Ramskold D, Wang ET, Burge CB, Sandberg R: An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 2009, 5(12):e1000598.
  • [23]Hochberg YBY: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc 1995, 57(1):289-300.
  • [24]Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013, 41(Web Server issue):W77-W83.
  • [25]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41(Database issue):D808-D815.
  • [26]Bartonicek N, Enright AJ: SylArray: a web server for automated detection of miRNA effects from expression data. Bioinformatics 2010, 26(22):2900-2901.
  • [27]Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C: MAGIA(2): from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res 2012, 40(Web Server issue):W13-W21.
  • [28]Kwon AT, Arenillas DJ, Worsley Hunt R, Wasserman WW: oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda) 2012, 2(9):987-1002.
  • [29]Jhas B, Sriskanthadevan S, Skrtic M, Sukhai MA, Voisin V, Jitkova Y, Gronda M, Hurren R, Laister RC, Bader GD, Minden MD, Schimmer AD: Metabolic adaptation to chronic inhibition of mitochondrial protein synthesis in acute myeloid leukemia cells. PLoS One 2013, 8(3):e58367.
  • [30]Kadl A, Huber J, Gruber F, Bochkov VN, Binder BR, Leitinger N: Analysis of inflammatory gene induction by oxidized phospholipids in vivo by quantitative real-time RT-PCR in comparison with effects of LPS. Vascul Pharmacol 2002, 38(4):219-227.
  • [31]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [32]Ankersmit HJ, Hoetzenecker K, Dietl W, Soleiman A, Horvat R, Wolfsberger M, Gerner C, Hacker S, Mildner M, Moser B, Lichtenauer M, Podesser BK: Irradiated cultured apoptotic peripheral blood mononuclear cells regenerate infarcted myocardium. Eur J Clin Invest 2009, 39(6):445-456.
  • [33]Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA: Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 2006, 311(5762):847-851.
  • [34]Elssner A, Doseff AI, Duncan M, Kotur M, Wewers MD: IL-16 is constitutively present in peripheral blood monocytes and spontaneously released during apoptosis. J Immunol 2004, 172(12):7721-7725.
  • [35]Fang J, Song XW, Tian J, Chen HY, Li DF, Wang JF, Ren AJ, Yuan WJ, Lin L: Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 2012, 17(4):410-423.
  • [36]Lichtenauer M, Mildner M, Baumgartner A, Hasun M, Werba G, Beer L, Altmann P, Roth G, Gyongyosi M, Podesser BK, Ankersmit HJ: Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction. Basic Res Cardiol 2011, 106(4):645-655.
  • [37]Lichtenauer M, Mildner M, Hoetzenecker K, Zimmermann M, Podesser BK, Sipos W, Berenyi E, Dworschak M, Tschachler E, Gyongyosi M, Ankersmit HJ: Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study. Basic Res Cardiol 2011, 106(6):1283-1297.
  • [38]Hoetzenecker K, Zimmermann M, Hoetzenecker W, Schweiger T, Kollmann D, Mildner M, Hegedus B, Mitterbauer A, Hacker S, Birner P, Gabriel C, Gyöngyösi M, Blyszczuk P, Eriksson U, Ankersmit HJ: Mononuclear cell secretome protects from experimental autoimmune myocarditis. Eur Heart J 2013. [Epub ahead of print]
  • [39]Hoetzenecker K, Assinger A, Lichtenauer M, Mildner M, Schweiger T, Starlinger P, Jakab A, Berenyi E, Pavo N, Zimmermann M, Gabriel C, Plass C, Gyöngyösi M, Volf I, Ankersmit HJ: Secretome of apoptotic peripheral blood cells (APOSEC) attenuates microvascular obstruction in a porcine closed chest reperfused acute myocardial infarction model: role of platelet aggregation and vasodilation. Basic Res Cardiol 2012, 107(5):292.
  • [40]Pavo N, Zimmermann M, Pils D, Mildner M, Petrasi Z, Petnehazy O, Fuzik J, Jakab A, Gabriel C, Sipos W, Maurer G, Gyöngyösi M, Ankersmit HJ: Long-acting beneficial effect of percutaneously intramyocardially delivered secretome of apoptotic peripheral blood cells on porcine chronic ischemic left ventricular dysfunction. Biomaterials 2014, 35(11):3541-3550.
  • [41]Slee EA, Keogh SA, Martin SJ: Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 2000, 7(6):556-565.
  • [42]Albrecht H, Durbin-Johnson B, Yunis R, Kalanetra KM, Wu S, Chen R, Stevenson TR, Rocke DM: Transcriptional response of ex vivo human skin to ionizing radiation: comparison between low- and high-dose effects. Radiat Res 2012, 177(1):69-83.
  • [43]Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A, Ciribilli Y: Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer 2013, 13:552. BioMed Central Full Text
  • [44]El-Saghire H, Thierens H, Monsieurs P, Michaux A, Vandevoorde C, Baatout S: Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol 2013, 89(8):628-638.
  • [45]Nosel I, Vaurijoux A, Barquinero JF, Gruel G: Characterization of gene expression profiles at low and very low doses of ionizing radiation. DNA Repair (Amst) 2013, 12(7):508-517.
  • [46]Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y: Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011, 5(4):336-348.
  • [47]Hada M, Georgakilas AG: Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res 2008, 49(3):203-210.
  • [48]McConnell BB, Yang VW: Mammalian Kruppel-like factors in health and diseases. Physiol Rev 2010, 90(4):1337-1381.
  • [49]Brandt T, Townsley FM, Teufel DP, Freund SM, Veprintsev DB: Molecular basis for modulation of the p53 target selectivity by KLF4. PLoS One 2012, 7(10):e48252.
  • [50]Wei D, Kanai M, Jia Z, Le X, Xie K: Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 2008, 68(12):4631-4639.
  • [51]Kim HS, Heo JI, Park SH, Shin JY, Kang HJ, Kim MJ, Kim SC, Kim J, Park JB, Lee JY: Transcriptional activation of p21(WAF(1)/CIP(1)) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts. Mol Biol Rep 2014, 41(4):2397-2408.
  • [52]Li H, Zhang Y, Strose A, Tedesco D, Gurova K, Selivanova G: Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis. Cell Death Differ 2014, 21:1493-1502.
  • [53]Luttrell LM, Miller WE: Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci 2013, 118:115-147.
  • [54]Arora H, Qureshi R, Jin S, Park AK, Park WY: miR-9 and let-7 g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mol Med 2011, 43(5):298-304.
  • [55]Metheetrairut C, Slack FJ: MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013, 23(1):12-19.
  • [56]Buscaglia LE, Li Y: Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011, 30(6):371-380.
  • [57]Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P: miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010, 6(1):e1000795.
  • [58]Shi S, Yu L, Zhang T, Qi H, Xavier S, Ju W, Bottinger E: Smad2-dependent downregulation of miR-30 is required for TGF-beta-induced apoptosis in podocytes. PLoS One 2013, 8(9):e75572.
  • [59]Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G, Fiore D, De Marinis P, Croce CM, Condorelli G: Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene 2013, 32(34):4001-4008.
  • [60]Lhakhang TW, Chaudhry MA: Interactome of Radiation-Induced microRNA-Predicted Target Genes. Comp Funct Genomics 2012, 2012:569731.
  • [61]Gewirtz DA, Hilliker ML, Wilson EN: Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiother Oncol 2009, 92(3):323-328.
  • [62]Berndt C, Kurz T, Selenius M, Fernandes AP, Edgren MR, Brunk UT: Chelation of lysosomal iron protects against ionizing radiation. Biochem J 2010, 432(2):295-301.
  • [63]Yue J, Wang Q, Lu H, Brenneman M, Fan F, Shen Z: The cytoskeleton protein filamin-A is required for an efficient recombinational DNA double strand break repair. Cancer Res 2009, 69(20):7978-7985.
  • [64]Akers JC, Gonda D, Kim R, Carter BS, Chen CC: Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013, 113(1):1-11.
  • [65]Vlassov AV, Magdaleno S, Setterquist R, Conrad R: Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012, 1820(7):940-948.
  • [66]Simons M, Raposo G: Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009, 21(4):575-581.
  • [67]Al-Mayah AH, Irons SL, Pink RC, Carter DR, Kadhim MA: Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation. Radiat Res 2012, 177(5):539-545.
  文献评价指标  
  下载次数:129次 浏览次数:51次