| BMC Research Notes | |
| Characterization of polymorphic microsatellite loci in the Antarctic krill Euphausia superba | |
| Gareth A Pearson1  Carlos M Duarte2  Sara Teixeira1  Rui Candeias1  | |
| [1] Centre of Marine Sciences, CCMAR-CIMAR, University of the Algarve, Gambelas Campus, 8005-139 Faro, Portugal;The UWA Ocean Institute and School of Plant Biology, The University of Western Australia, 35 Stirling Highway, 6009 Crawley, Australia | |
| 关键词: Microsatellites; Pelagic invertebrate; Euphausia superba; Genetic diversity; Antarctic krill; | |
| Others : 1134607 DOI : 10.1186/1756-0500-7-73 |
|
| received in 2013-10-24, accepted in 2014-01-28, 发布年份 2014 | |
【 摘 要 】
Background
The Antarctic krill, Euphausia superba is a pelagic crustacean, abundant in high-density swarms (10 000 – 30 000 ind/m2) with a circumpolar distribution and a key role in the food web of the Southern Ocean. Only three EST derived microsatellite markers have been used in previous genetic studies, hence we developed additional highly polymorphic microsatellite markers to allow robust studies of the genetic variability and population differentiation within this species.
Findings
The microsatellite markers described here were obtained through an enriched genomic library, followed by 454 pyrosequencing. A total of 10 microsatellite markers were tested in 32 individuals from the Antarctic Peninsula. One of the tested loci was fixed for one allele while the other was variable. Of the remaining nine markers, seven showed no departure from Hardy-Weinberg equilibrium. The mean number of alleles was 14.9.
Conclusions
These markers open perspectives for population genetic studies of this species to unravel genetic structure, dispersal and population biology, vital information for future conservation.
【 授权许可】
2014 Candeias et al.; licensee BioMed Central Ltd.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 1. | 35KB | Image |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S: Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 1998, 393:245-249.
- [2]Mauchline J: The biology of mysids and euphausiids. Adv Mar Biol 1980, 18:1-681.
- [3]de Santana CN, Rozenfeld AF, Marquet PA, Duarte CM: Topological properties of polar food webs. Mar Ecol Prog Ser 2013, 474:15-26.
- [4]Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A: Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Clim Change 2013, . doi:10.1038/nclimate1937
- [5]Fevolden S, Ayala F: Enzyme polymorphism in Antarctic krill (Euphausiacea); genetic variation between populations and species. Sarsia 1981, 66:167-181.
- [6]Kuhl S, Schneppenheim R: Electrophoretic investigation of genetic variation in two krill species Euphausia superba and E. crystallorophias (Euphausiidae). Polar Biol 1985, 6:17-23.
- [7]Fevolden SE, Schneppenheim R: Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar Biol 1989, 9:533-539.
- [8]Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T: Molecular evidence for genetic sudivision of Antarctic krill populations. Proc Royal Soc London B 1998, 265:2387-2391.
- [9]Goodall-Copestake WP, Perez-Espona S, Clark MS, Murphy EJ, Seear PJ, Tarling GA: Swarms of diversity at the gene cox1 in the Antarctic krill. Heredity 2010, 104:513-518.
- [10]Bortolotto E, Bucklin A, Mezzavilla M, Zane L, Patarnello T: Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet 2011, 12:32.
- [11]Jarman S, Elliott N, Nicol S, McMinn A, Newman S: The base composition of the krill genome and its potential susceptibility to damage by UV-B. Antarct Sci 1999, 11:23-26.
- [12]Batta-Lona PG, Bucklin A, Wiebe PH, Copley NJ, Patarnello T: Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs). Deep-Sea Res II 2011, 58:1652-1661.
- [13]Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus 1990, 12:13-15.
- [14]Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG: Primer3- new capabilities and interfaces. Nucleic Acids Res 2012, 40(15):e115.
- [15]Schuelke M: An economic method for the fluorescent labelling of PCR fragments. Nature Biotech 2000, 18:233-234.
- [16]Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F: GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier (France); 1996-2004. [Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II]
- [17]Van Oosterhout C, Hutchinson W, Wills DPM, Shipley P: Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 2:377-379.