期刊论文详细信息
BMC Evolutionary Biology
Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution
Jingchen Sun2  Shuyu Liu1  Yao Ping2  Hao Zheng2  Zhisheng Liang2  Qi Qi2  Xian Jia2  Jian He1  Lei Wei2 
[1] Guangzhou East Campus Lab Center, Sun Yat-sen University, Guangzhou 510006, China;Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
关键词: Evolution;    Mitochondrial DNA;    Genomic DNA;    Synonymous codon usage bias;    Bombyx mori;   
Others  :  1121751
DOI  :  10.1186/s12862-014-0262-4
 received in 2014-08-20, accepted in 2014-12-09,  发布年份 2014
PDF
【 摘 要 】

Background

Synonymous codon usage bias (SCUB) is an inevitable phenomenon in organismic taxa, generally referring to differences in the occurrence frequency of codons across different species or within the genome of the same species. SCUB happens in various degrees under pressure from nature selection, mutation bias and other factors in different ways. It also attaches great significance to gene expression and species evolution, however, a systematic investigation towards the codon usage in Bombyx mori (B. mori) has not been reported yet. Moreover, it is still indistinct about the reasons contributing to the bias or the relationship between the bias and the evolution of B. mori.

Results

The comparison of the codon usage pattern between the genomic DNA (gDNA) and the mitochondrial DNA (mtDNA) from B. mori suggests that mtDNA has a higher level of codon bias. Furthermore, the correspondence analysis suggests that natural selection, such as gene length, gene function and translational selection, dominates the codon preference of mtDNA, while the composition constraints for mutation bias only plays a minor role. Additionally, the clustering results of the silkworm superfamily suggest a lack of explicitness in the relationship between the codon usage of mitogenome and species evolution.

Conclusions

Among the complicated influence factors leading to codon bias, natural selection is found to play a major role in shaping the high bias in the mtDNA of B. mori from our current data. Although the cluster analysis reveals that codon bias correlates little with the species evolution, furthermore, a detailed analysis of codon usage of mitogenome provides better insight into the evolutionary relationships in Lepidoptera. However, more new methods and data are needed to investigate the relationship between the mtDNA bias and evolution.

【 授权许可】

   
2014 Wei et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150213011259778.pdf 740KB PDF download
Figure 7. 61KB Image download
Figure 6. 10KB Image download
Figure 5. 13KB Image download
Figure 4. 13KB Image download
Figure 3. 9KB Image download
Figure 2. 11KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Sun Z, Wan D, Murphy RW, Ma L, Zhang X, Huang D: Comparison of base composition and codon usage in insect mitochondrial genomes. Genes Genom 2009, 31(1):65-71.
  • [2]Sharp MP, Li W: Codon usage in regulatory genes in Escherichia coli does not reflect selection for rare codons. Nucleic Acids Research 1986, 14(19):7737-7749.
  • [3]Bulmer M: The selection-mutation-drift theory of synonymous codon usage. Genetics 1991, 129(3):897-907.
  • [4]Peden JF: Analysis of Codon Usage. PhD thesis. Nottingham University, Department of Genetics; 1999.
  • [5]Francino HP, Ochman H: Isochores result from mutation not selection. Nature 1999, 400:30-31.
  • [6]Powell JR, Moriyama EN: Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A 1997, 94:7784-7790.
  • [7]Wang HC, Hickey DA: Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol 2007, 7(1):S6. BioMed Central Full Text
  • [8]Ingvarsson PK: Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol 2007, 24:836-844.
  • [9]Zhu B, Liu Q, Dai L, Wang L, Sun Y, Lin K, Wei G, Liu C: Characterization of the complete mitochondrial genome of Diaphania pyloalis (Lepidoptera: Pyralididae). Gene 2013, 527(1):283-291.
  • [10]Sima Y, Chen M, Yao R, Li Y, Liu T, Jin X, Wang L, Su J, Li X, Liu Y: The complete mitochondrial genome of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae). Gene 2013, 526(2):309-317.
  • [11]Dai L, Zhu B, Liu Q, Wei G, Liu C: Characterization of the complete mitochondrial genome of Bombyx mori strain H9 (Lepidoptera: Bombycidae). Gene 2013, 519(2):326-334.
  • [12]Kobayashi N, Takahashi M, Kihara S, Niimi T, Yamashita O, Yaginuma T: Cloning of cDNA encoding a Bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function. J Insect Physiol 2014, 68:58-68.
  • [13]Ihara H, Okada T, Ikeda Y: Cloning, expression and characterization of Bombyx mori α1,6-fucosyltransferase. Biochem Bioph Res Co 2014, 450(2):953-960.
  • [14]Cai X, Yu J, Yu H, Liu Y, Fang Y, Ren Z, Jia J, Zhang G, Guo X, Jin B, Gui Z: Core promoter regulates the expression of cathepsin B gene in the fat body of Bombyx mori. Gene 2014, 542(2):232-239.
  • [15]Zhou Y, Chen H, Li X, Wang Y, Chen K, Zhang S, Meng X, Lee EYC, Lee MYWT: Production of recombinant human DNA polymerase delta in a Bombyx Mori bioreactor. PLoS One 2011, 6(7):e22224.
  • [16]Jiang L, Zhao P, Cheng T, Sun Q, Peng Z, Dang Y, Wu X, Wang G, Jin S, Lin P, Xia Q: A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antivir Res 2013, 98:171-173.
  • [17]Jiang L, Zhao P, Wang G, Cheng T, Yang Q, Jin S, Lin P, Xiao Y, Sun Q, Xia Q: Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm. Bombyx mori Antivir Res 2013, 97(3):255-263.
  • [18]Jiang L, Xia Q: The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Molec 2014, 48:1-7.
  • [19]Arunkumar KP, Metta M, Nagaraju J: Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol Phylogenet Evol 2006, 40(2):419-427.
  • [20]Maekawa H, Takada N, Mikitani K, Ogura T, Miyajima N, Fujiwara H, Kobayashi M, Ninaki O: Nucleolus organizers in the wild silkworm Bombyx mandarina and the domesticated silkworm B. mori. Chromosoma 1988, 96(4):263-269.
  • [21]Li D, Guo Y, Shao H, Tellier LC, Wang J, Xiang Z, Xia Q: Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol Biol 2010, 10:81. BioMed Central Full Text
  • [22]Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, et al.: A draft sequence for the genome of the domesticated silkworm (Bombyx Mori). Science 2004, 306(5703):1937-1940.
  • [23]Mita K, Yasukochi Y, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Hiroaaki A, Shimada T, Morishita S, Sasaki T: The genome sequence of silkworm, Bombyx mori. DNA research: an international journal for rapid publication of reports on genes and genomes 2004, 11(1):27-35.
  • [24]Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu SHe N, et al.: Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 2009, 326(5951):433-436.
  • [25]Hebert PD, Cywinska A, Ball SL, de Waard JR: Biological identifications through DNA barcodes. Proc Biol Sci 2003, 270:313-321.
  • [26]Zhu LX, Wu XB: Phylogenetic evaluation of the taxonomic status of Papilio maackii and P. syfanius (Lepidoptera: Papilionidae). Zool Res 2011, 32:248-254.
  • [27]Gissi C, Iannelli F, Pesole G: Evolution of the mitochondrial genome of Metazoa as exemplified bycomparison of congeneric species. Heredity 2008, 101:301-320.
  • [28]Curole JP, Kocher TD: Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 1999, 14(10):394-398.
  • [29]Barton N, Jones JS: Evolutionary biology: Mitochondrial DNA: new clues about evolution. Nature 1983, 306:317-318.
  • [30]Galtier N, Nabholz B, Glemin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 2009, 18(22):4541-4550.
  • [31]Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y: Significant levels of sequence divergence and gene Rearrangements have occurred between the mitochondrial Genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 2002, 19(8):1385-1389.
  • [32]Wei S, Li Q, van Achterberg K, Chen X: Two mitochondrial genomes from the families Bethylidae and Mutillidae: Independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Mol Phylogenet Evol 2014, 77:1-10.
  • [33]Harrison RG: Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 1989, 4(1):6-11.
  • [34]Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999, 27(8):1767-1780.
  • [35]Kawabe A, Miyashita NT: Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 2003, 78(5):343-352.
  • [36]Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature 2006, 440(7084):623-630.
  • [37]Wise CA, Sraml M, Easteal S: Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics 1998, 148(1):409-421.
  • [38]Rand DM, Kann LM: Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica (Dordrecht) 1998, 102–103:393-407.
  • [39]David MR, Michele D, Lisa MK: Neutral and nonneutral evolution of drosophila mitochondrial DNA. Genetics 1994, 138:741-756.
  • [40]Nachman MW, Brown WM, Stoneking M, Aquadro CF: Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 1996, 142(3):953-963.
  • [41]Ballard J, Kreitman JW: Unraveling selection in the mitochondrial genome of Drosophila. Genetics 1994, 138(3):757-772.
  • [42]Rand DM, Haney RA, Fry AJ: Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 2004, 19(12):645-653.
  • [43]Dowling D, Friberg U, Lindell J: Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 2008, 23(10):546-554.
  • [44]Gemmell NJ, Metcalf VJ, Allendorf FW: Mothers curse the effect of mtDNA on individual fitness and population viability. Trends in Ecology and Evolution 2004, 19(5):238-244.
  • [45]Blier PU, Dufresne F, Burton RS: Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 2001, 17(7):400-406.
  • [46]Meiklejohn CD, Montooth KL, Rand DM: Positive and negative selection on the mitochondrial genome. Trends Genet 2007, 23(6):259-263.
  • [47]Ballard J, Rand DM: The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 2005, 36:621-642.
  • [48]Burton RS, Ellison CK, Harrison JS: The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat 2006, 168(Suppl 6):S14-S24.
  • [49]Rand DM: The Units of Selection of Mitochondrial DNA. Annu Rev Ecol Syst 2001, 32:415-448.
  • [50]Pesole G, Gissi C, De Chirico A, Saccone C: Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 1999, 48(4):427-434.
  • [51]Wright F: The ‘effective number of codons’ used in a gene. Gene 1990, 87(1):23-29.
  • [52]Tao P, Dai L, Luo M, Tang F, Tien P, Pan Z: Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 2009, 38(1):104-112.
  • [53]Liu YS, Zhou JH, Chen HT, Ma LN, Pejsak Z, Ding YZ, Zhang J: The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect Genet Evol 2011, 11(5):1168-1173.
  • [54]Duret L, Mouchiroud D: Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 1999, 96(8):4482-4487.
  • [55]Qiu S, Bergero R, Zeng K, Charlesworth D: Patterns of codon usage Bias in Silene latifolia. Mol Biol Evol 2010, 28(1):771-780.
  • [56]Comeron JM, Aguade M: An evaluation of measures of synonymous codon usage bias. J Mol Evol 1998, 47(3):268-274.
  • [57]Jia W, Higgs PG: Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 2008, 25(2):339-351.
  • [58]Wright SI: Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol 2004, 21(9):1719-1726.
  • [59]Zhang Z, Li J, Cui P, Ding F, Li A, Townsend JP, Yu J: Codon deviation coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinformatics 2012, 13:43. BioMed Central Full Text
  • [60]Ikemura T: Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 1985, 2(1):13-34.
  • [61]Hou ZC, Yang N: Factors affecting codon usage in Yersinia pestis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2003, 35(6):580-586.
  • [62]Moriyama EN, Powell JR: Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res 1998, 26(13):3188-3193.
  • [63]Miyasaka H: Translation initiation AUG context varies with codon usage bias and gene length in Drosophila melanogaster. J Mol Evol 2002, 55(1):52-64.
  • [64]Liu S, Xue D, Cheng R, Han H: The complete mitogenome of Apocheima cinerarius (Lepidoptera: Geometridae: Ennominae) and comparison with that of other Lepidopteran insects. Gene 2014, 547:136-144.
  • [65]Roychoudhury S, Mukherjee D: A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res 2010, 148(1–2):31-43.
  • [66]Bennetzen JL, Hall BD: Codon selection in yeast. The Journal of biological chemistry 1982, 257(6):3026-3031.
  • [67]Sharp PM, Tuohy TM, Mosurski KR: Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 1986, 14(13):5125-5143.
  • [68]Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982, 157(1):105-132.
  • [69]Lobry JR, Gautier C: Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 1994, 22(15):3174-3180.
  • [70]Gupta SK, Ghosh TC: Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene 2001, 273(1):63-70.
  • [71]Grantham R, Gautier C, Gouy M, Mercier R, Pave A: Codon catalog usage and the genome hypothesis. Nucleic Acids Res 1980, 8(1):r49-r62.
  • [72]Sharp PM, Devine KM: Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do ‘prefer’ optimal codons. Nucleic Acids Res 1989, 17(13):5029-5039.
  • [73]Shields DC, Sharp PM: Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 1987, 15(19):8023-8040.
  • [74]Sueoka N: Directional mutation pressure and neutral molecular evolution. P Natl Acad Sci USA 1988, 85(8):2653-2657.
  • [75]Sueoka N: Two aspects of DNA base composition: G + C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol 1999, 49(1):49-62.
  文献评价指标  
  下载次数:78次 浏览次数:17次