期刊论文详细信息
BMC Microbiology
Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress
Suely L Gomes1  Gabriela M Avelar1  Rogério F Lourenço1  Christian Kohler2 
[1] Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil;Present address: Friedrich Loeffler Institut for Medical Microbiology, Greifswald, Germany
关键词: Caulobacter crescentus;    Cadmium;    Chromium;    ECF sigma factor σF;    Stress response;   
Others  :  1221753
DOI  :  10.1186/1471-2180-12-210
 received in 2012-07-04, accepted in 2012-09-10,  发布年份 2012
PDF
【 摘 要 】

Background

The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes.

Results

In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF.

Conclusion

A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.

【 授权许可】

   
2012 Kohler et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803112909162.pdf 1068KB PDF download
Figure 6. 14KB Image download
Figure 5. 134KB Image download
Figure 4. 33KB Image download
Figure 3. 28KB Image download
Figure 2. 33KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C: Mechanisms of bacterial resistance to chromium compounds. Biometals 2008, 21(3):321-332.
  • [2]Nies DH: Microbial heavy-metal resistance. Appl Microbiol Biotechnol 1999, 51(6):730-750.
  • [3]Barceloux DG: Chromium. J Toxicol Clin Toxicol 1999, 37(2):173-194.
  • [4]Cervantes C: Reduction and efflux of chromate in bacteria. In NiesDH and Silver S (eds) Molecular Biology of Heavy Metals. Berlin: Springer-Verlag; 2007.
  • [5]Ohtake H, Komori K, Cervantes C, Toda K: Chromate-resistance in a chromate-reducing strain of Enterobacter cloacae. FEMS Microbiol Lett 1990, 55(1–2):85-88.
  • [6]Gonzalez CF, Ackerley DF, Lynch SV, Matin A: ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 2005, 280(24):22590-22595.
  • [7]Kwak YH, Lee DS, Kim HB: Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 2003, 69(8):4390-4395.
  • [8]Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J: Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 2004, 271(3):553-562.
  • [9]Ackerley DF, Gonzalez CF, Park CH, Blake R 2nd, Keyhan M, Matin A: Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 2004, 70(2):873-882.
  • [10]Lapteva NA: Ecological features of distribution of bacteria of the genus Caulobacter in freshwater bodies. Mikrobiologiya 1987, 56:537-543.
  • [11]Poindexter JS: The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 1981, 45(1):123-179.
  • [12]Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL: Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 2005, 187(24):8437-8449.
  • [13]Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, et al.: Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 2001, 98(7):4136-4141.
  • [14]Lourenco RF, Kohler C, Gomes SL: A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. Mol Microbiol 2011, 80(6):1598-1612.
  • [15]Lourenco RF, Gomes SL: The transcriptional response to cadmium, organic hydroperoxide, singlet oxygen and UV-A mediated by the sigmaE-ChrR system in Caulobacter crescentus. Mol Microbiol 2009, 72(5):1159-1170.
  • [16]Alvarez-Martinez CE, Baldini RL, Gomes SL: A caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase. J Bacteriol 2006, 188(5):1835-1846.
  • [17]Klein C, Snow E, Frenkel K (Eds): Molecular mechanisms in metal carcinogenesis: role of oxidative stress, In O. I. Aruoma and B. Halliwell (ed.), Molecular biology of free radicals in human diseases. London, England: OICA International; 1998.
  • [18]Italiani VC, da Silva Neto JF, Braz VS, Marques MV: Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J Bacteriol 2011, 193(7):1734-1744.
  • [19]Das D, Grishin NV, Kumar A, Carlton D, Bakolitsa C, Miller MD, Abdubek P, Astakhova T, Axelrod HL, Burra P, et al.: The structure of the first representative of Pfam family PF09836 reveals a two-domain organization and suggests involvement in transcriptional regulation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010, 66(Pt 10):1174-1181.
  • [20]Gunesekere IC, Kahler CM, Ryan CS, Snyder LA, Saunders NJ, Rood JI, Davies JK: Ecf, an alternative sigma factor from Neisseria gonorrhoeae, controls expression of msrAB, which encodes methionine sulfoxide reductase. J Bacteriol 2006, 188(10):3463-3469.
  • [21]Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T: The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 2009, 74(3):557-581.
  • [22]Kappler U: Bacterial sulfite-oxidizing enzymes. Biochim Biophys Acta 2011, 1807(1):1-10.
  • [23]Muller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A: Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 2004, 53(4):1147-1160.
  • [24]Purschke WG, Schmidt CL, Petersen A, Schafer G: The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 1997, 179(4):1344-1353.
  • [25]Griffith OW: Mammalian sulfur amino acid metabolism: an overview. Methods Enzymol 1987, 143:366-376.
  • [26]Cook AM, Denger K: Metabolism of taurine in microorganisms: a primer in molecular biodiversity? Adv Exp Med Biol 2006, 583:3-13.
  • [27]Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen SL, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, et al.: Global proteomic analysis of the chromate response in Arthrobacter sp. strain FB24. J Proteome Res 2009, 8(4):1704-1716.
  • [28]Thompson DK, Chourey K, Wickham GS, Thieman SB, VerBerkmoes NC, Zhang B, McCarthy AT, Rudisill MA, Shah M, Hettich RL: Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge. BMC Genomics 2010, 11:311. BioMed Central Full Text
  • [29]Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK: Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 2006, 5(6):1054-1071.
  • [30]Alvarez-Martinez CE, Lourenco RF, Baldini RL, Laub MT, Gomes SL: The ECF sigma factor sigma(T) is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol Microbiol 2007, 66(5):1240-1255.
  • [31]Grosse C, Friedrich S, Nies DH: Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 2007, 12(3–4):227-240.
  • [32]Dona V, Rodrigue S, Dainese E, Palu G, Gaudreau L, Manganelli R, Provvedi R: Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor sigmaE in Mycobacterium tuberculosis. J Bacteriol 2008, 190(17):5963-5971.
  • [33]Raman S, Song T, Puyang X, Bardarov S, Jacobs WR Jr, Husson RN: The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 2001, 183(20):6119-6125.
  • [34]Osterberg S, Del Peso-Santos T, Shingler V: Regulation of Alternative Sigma Factor Use. Annu Rev Microbiol 2010.
  • [35]Missiakas D, Raina S: The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 1998, 28(6):1059-1066.
  • [36]Helmann JD: The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 2002, 46:47-110.
  • [37]Campbell EA, Tupy JL, Gruber TM, Wang S, Sharp MM, Gross CA, Darst SA: Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA. Mol Cell 2003, 11(4):1067-1078.
  • [38]Brauer SL, Hneihen AS, McBride JS, Wetterhahn KE: Chromium(VI) Forms Thiolate Complexes with gamma-Glutamylcysteine, N-Acetylcysteine, Cysteine, and the Methyl Ester of N-Acetylcysteine. Inorg Chem 1996, 35(2):373-381.
  • [39]Ely B: Genetics of Caulobacter crescentus. Methods Enzymol 1991, 204:372-384.
  • [40]Simon R, Priefer U, Pühler A: A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotechnol 1983, 1:784-790.
  • [41]Miller JH: Experiments in Molecular Genetics. Cold Spring Habor. New York: Cold Spring Habor Laboratory Press; 1972. ed.
  • [42]Tsai JW, Alley MR: Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon. J Bacteriol 2000, 182(2):504-507.
  • [43]Evinger M, Agabian N: Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 1977, 132(1):294-301.
  • [44]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [45]Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 1992, 24:145-149.
  • [46]Gober JW, Shapiro L: A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol Biol Cell 1992, 3(8):913-926.
  • [47]Corpet F: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988, 16(22):10881-10890.
  • [48]Letunic I, Doerks T, Bork P: SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012, 40(Database issue):D302-D305.
  文献评价指标  
  下载次数:72次 浏览次数:52次