BMC Structural Biology | |
A three-dimensional topology of complex I inferred from evolutionary correlations | |
Martijn A Huynen1  Isabel Duarte1  Philip R Kensche1  | |
[1] Netherlands Bioinformatics Centre, Geert Grooteplein 28, Nijmegen, GA, 6525, The Netherlands | |
关键词: Co-evolution; Mirror-tree method; Assembly; Quaternary topology; Eukaryotic complex I; | |
Others : 1092027 DOI : 10.1186/1472-6807-12-19 |
|
received in 2012-02-13, accepted in 2012-06-28, 发布年份 2012 | |
【 摘 要 】
Background
The quaternary structure of eukaryotic NADH:ubiquinone oxidoreductase (complex I), the largest complex of the oxidative phosphorylation, is still mostly unresolved. Furthermore, it is unknown where transiently bound assembly factors interact with complex I. We therefore asked whether the evolution of complex I contains information about its 3D topology and the binding positions of its assembly factors. We approached these questions by correlating the evolutionary rates of eukaryotic complex I subunits using the mirror-tree method and mapping the results into a 3D representation by multidimensional scaling.
Results
More than 60% of the evolutionary correlation among the conserved seven subunits of the complex I matrix arm can be explained by the physical distance between the subunits. The three-dimensional evolutionary model of the eukaryotic conserved matrix arm has a striking similarity to the matrix arm quaternary structure in the bacterium Thermus thermophilus (rmsd=19 Å) and supports the previous finding that in eukaryotes the N-module is turned relative to the Q-module when compared to bacteria. By contrast, the evolutionary rates contained little information about the structure of the membrane arm. A large evolutionary model of 45 subunits and assembly factors allows to predict subunit positions and interactions (rmsd = 52.6 Å). The model supports an interaction of NDUFAF3, C8orf38 and C2orf56 during the assembly of the proximal matrix arm and the membrane arm. The model further suggests a tight relationship between the assembly factor NUBPL and NDUFA2, which both have been linked to iron-sulfur cluster assembly, as well as between NDUFA12 and its paralog, the assembly factor NDUFAF2.
Conclusions
The physical distance between subunits of complex I is a major correlate of the rate of protein evolution in the complex I matrix arm and is sufficient to infer parts of the complex’s structure with high accuracy. The resulting evolutionary model predicts the positions of a number of subunits and assembly factors.
【 授权许可】
2012 Kensche et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128175853375.pdf | 1320KB | download | |
Figure 3. | 51KB | Image | download |
Figure 2. | 73KB | Image | download |
Figure 1. | 65KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE: Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2003, 2(2):117-126.
- [2]Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE: The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 2003, 1604(3):135-150.
- [3]Garcia-Vallve S: Contribution of each complex of the mitochondrial respiratory chain in the generation of the proton-motive force. Biochem Mol Biol Edu 2004, 32(1):17-19.
- [4]Friedrich T, Abelmann A, Brors B, Guénebaut V, Kintscher L, Leonard K, Rasmussen T, Scheide D, Schlitt A, Schulte U, et al.: Redox components and structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1998, 1365(1–2):215-219.
- [5]Efremov RG, Baradaran R, Sazanov LA: The architecture of respiratory complex I. Nature 2010, 465(7297):441-445.
- [6]Hunte C, Zickermann V, Brandt U: Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 2010, 329(5990):448-451.
- [7]Efremov RG, Sazanov LA: Structure of the membrane domain of respiratory complex I. Nature 2011, 476(7361):414-420.
- [8]Sazanov LA, Hinchliffe P: Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 2006, 311(5766):1430-1436.
- [9]Yip C-, Harbour ME, Jayawardena K, Fearnley IM, Sazanov LA: Evolution of respiratory complex I: 'supernumerary' subunits are present in the α-proteobacterial enzyme. J Biol Chem 2010, 286(7):5023-5033.
- [10]Gabaldón T, Rainey D, Huynen MA: Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol 2005, 348(4):857-870.
- [11]Bych K, Kerscher S, Netz DJA, Pierik AJ, Zwicker K, Huynen MA, Lill R, Brandt U, Balk J: The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J 2008, 27(12):1736-1746.
- [12]Carilla-Latorre S, Gallardo ME, Annesley SJ, Calvo-Garrido J, Grana O, Accari SL, Smith PK, Valencia A, Garesse R, Fisher PR, et al.: MidA is a putative methyltransferase that is required for mitochondrial complex I function. J Cell Sci 2010, 123(10):1674-1683.
- [13]Küffner R, Rohr A, Schmiede A, Krüll C, Schulte U: Involvement of two novel chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I). J Mol Biol 1998, 283(2):409-417.
- [14]Ogilvie I, Kennaway NG, Shoubridge EA: A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 2005, 115(10):2784-2792.
- [15]Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK, et al.: A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134(1):112-123.
- [16]Saada A, Edvardson S, Rapoport M, Shaag A, Amry K, Miller C, Lorberboum-Galski H, Elpeleg O: C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 2008, 82(1):32-38.
- [17]Saada A, Vogel RO, Hoefs SJ, van den Brand MA, Wessels HJ, Willems PH, Venselaar H, Shaag A, Barghuti F, Reish O, et al.: Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease. Am J Hum Genet 2009, 84:718-727.
- [18]Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R, Abu-Amero KK, Dahl H-HM, Hutchison WM, Vascotto KA, Smith SM, et al.: Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 2008, 83(4):468-478.
- [19]Vogel RO, Janssen RJRJ, van den Brand MAM, Dieteren CEJ, Verkaart S, Koopman WJH, Willems PHGM, Pluk W, van den Heuvel LPWJ, Smeitink JAM, et al.: Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 2007, 21(5):615-624.
- [20]Ugalde C, Vogel R, Huijbens R, Heuvel BVD, Smeitink J, Nijtmans L: Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum Mol Genet 2004, 13(20):2461-2472.
- [21]Gershoni M, Fuchs A, Shani N, Fridman Y, Corral-Debrinski M, Aharoni A, Frishman D, Mishmar D: Co-evolution predicts direct interactions between mtDNA and nuclear DNA-encoded subunits of oxidative phosphorylation complex I. J Mol Biol 2010, 404(1):158-171.
- [22]Yamaguchi M, Hatefi Y: Mitochondrial NADH:ubiquinone oxidoreductase (complex I): proximity of the subunits of the flavoprotein and the iron-sulfur protein subcomplexes. Biochemistry 1993, 32(8):1935-1939.
- [23]Huynen MA, Bork P: Measuring genome evolution. Proc Natl Acad Sci U S A 1998, 95(11):5849-5856.
- [24]Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999, 96(8):4285-4288.
- [25]Gabaldón T, Huynen MA: Lineage-specific gene loss following mitochondrial endosymbiosis and its potential for function prediction in eukaryotes. Bioinformatics 2005, 21(Suppl 2):ii144-ii150.
- [26]Kensche PR, van Noort V, Dutilh BE, Huynen MA: Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution. J R Soc Interface 2008, 5(19):151-170.
- [27]Pazos F, Valencia A: Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 2001, 14(9):609-614.
- [28]Göbel U, Sander C, Schneider R, Valencia A: Correlated mutations and residue contacts in proteins. Proteins 1994, 18(4):309-317.
- [29]Neher E: How frequent are correlated changes in families of protein sequences? Proc Natl Acad Sci U S A 1994, 91(1):98-102.
- [30]Burger L, van Nimwegen E: Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol Syst Biol 2008, 4:165.
- [31]Weigt M, White RA, Szurmant H, Hoch JA, Hwa T: Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci U S A 2009, 106(1):67-72.
- [32]Huynen MA, de Hollander M, Szklarczyk R: Mitochondrial proteome evolution and genetic disease. Biochim Biophys Acta 2009, 1792(12):1122-1129.
- [33]Yang M, Ge Y, Wu J, Xiao J, Yu J: Coevolution study of mitochondria respiratory chain proteins: Toward the understanding of protein-protein interaction. J Genet Genomics 2011, 38(5):201-207.
- [34]Pazos F, Ranea JA, Juan D, Sternberg MJ: Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J Mol Biol 2005, 352(4):1002-1015.
- [35]Sato T, Yamanishi Y, Kanehisa M, Toh H: The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 2005, 21(17):3482-3489.
- [36]Juan D, Pazos F, Valencia A: High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci 2008, 105(3):934-939.
- [37]Criscuolo A, Gribaldo S: BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010, 10(1):210. BioMed Central Full Text
- [38]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
- [39]Hakes L, Lovell SC, Oliver SG, Robertson DL: Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc Natl Acad Sci U S A 2007, 104(19):7999-8004.
- [40]Clark NL, Alani E, Aquadro CF: Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Res 2012, 22(4):714-720.
- [41]Everitt BS, Dunn G: Applied multivariate data analysis / Brian S. Everitt and Graham Dunn. Edward Arnold, London ; Melbourne; 1991.
- [42]Marques I, Dencher NA, Videira A, Krause F: Supramolecular Organization of the Respiratory Chain in Neurospora crassa Mitochondria. Eukaryot Cell 2007, 6(12):2391-2405.
- [43]Marques I, Ushakova AV, Duarte M, Videira A: Role of the Conserved Cysteine Residues of the 11.5 kDa Subunit in Complex I Catalytic Properties. J Biochem 2007, 141(4):489-493.
- [44]Fearnley IM, Finel M, Skehel JM, Walker JE: NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits. Biochem J 1991, 278:821-829.
- [45]Abdrakhmanova A, Zwicker K, Kerscher S, Zickermann V, Brandt U: Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochimica et Biophysica Acta (BBA). Bioenergetics 2006, 1757(12):1676-1682.
- [46]Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, Vissing J, Kennaway NG, Shoubridge EA: Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 2003, 278(44):43081-43088.
- [47]Heinrich H, Azevedo JE, Werner S: Characterization of the 9.5-kDa ubiquinone-binding protein of NADH:ubiquinone oxidoreductase (complex I) from Neurospora crassa. Biochemistry 1992, 31(46):11420-11424.
- [48]Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, Kaiser S, Nübel E, Brutschy B, Radermacher M, et al.: A scaffold of accessory subunits links the peripheral arm and the distal proton pumping module of mitochondrial complex I. Biochem J 2011, 437:279-288.
- [49]da Silva MV, Alves PC, Duarte M, Mota N, da Cunha AL, Harkness TA, Nargang FE, Videira A: Disruption of the nuclear gene encoding the 20.8-kDa subunit of NADH: ubiquinone reductase of Neurospora mitochondria. Mol Gen Genet 1996, 252(1–2):177-183.
- [50]Nehls U, Friedrich T, Schmiede A, Ohnishi T, Weiss H: Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J Mol Biol 1992, 227(4):1032-1042.
- [51]Lynch M, Koskella B, Schaack S: Mutation Pressure and the Evolution of Organelle Genomic Architecture. Science 2006, 311(5768):1727-1730.
- [52]Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE: Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 2000, 39(24):7229-7235.
- [53]Lemma-Gray P, Valusová E, Carroll CA, Weintraub ST, Musatov A, Robinson NC: Subunit analysis of bovine heart complex I by reversed-phase high-performance liquid chromatography, electrospray ionization-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Biochem 2008, 382(2):116-121.
- [54]Marques I, Duarte M, Videira A: The 9.8 kDa Subunit of Complex I, Related to Bacterial Na+−translocating NADH Dehydrogenases, is Required for Enzyme Assembly and Function in Neurospora crassa. J Mol Biol 2003, 329(2):283-290.
- [55]Dudkina NV, Kouřil R, Peters K, Braun H-P, Boekema EJ: Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 2010, 1797(6–7):664-670.
- [56]Reyes A, Gissi C, Pesole G, Saccone C: Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 1998, 15(8):957-966.
- [57]Delorme MO, Hénaut A: Codon usage is imposed by the gene location in the transcription unit. Curr Genet 1991, 20(5):353-358.
- [58]Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K: Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 1991, 32(6):511-520.
- [59]Wei S-J, Shi M, Chen X-X, Sharkey MJ, van Achterberg C, Ye G-Y, He J-H: New views on strand asymmetry in insect mitochondrial genomes. PLoS One 2010, 5(9):e12708.
- [60]Nosek J, Tomaska L: Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003, 44(2):73-84.
- [61]Nikolaou C, Almirantis Y: Deviations from Chargaff's second parity rule in organellar DNA: Insights into the evolution of organellar genomes. Gene 2006, 381:34-41.
- [62]Lazarou M, Thorburn DR, Ryan MT, McKenzie M: Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta, Mol Cell Res 2009, 1793(1):78-88.
- [63]Dunning CJR, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT: Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 2007, 26(13):3227-3237.
- [64]Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT: Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 2007, 27(12):4228-4237.
- [65]Vogel RO, van den Brand MAM, Rodenburg RJ, van den Heuvel LPWJ, Tsuneoka M, Smeitink JAM, Nijtmans LGJ: Investigation of the complex I assembly chaperones B17.2L and NDUFAF1 in a cohort of CI deficient patients. Mol Genet Metab 2007, 91(2):176-182.
- [66]McKenzie M, Tucker EJ, Compton AG, Lazarou M, George C, Thorburn DR, Ryan MT: Mutations in the Gene Encoding C8orf38 Block Complex I Assembly by Inhibiting Production of the Mitochondria-Encoded Subunit ND1. J Mol Biol 2011, 414(3):413-426.
- [67]Sheftel AD, Stehling O, Pierik AJ, Netz DJA, Kerscher S, Elsasser H-P, Wittig I, Balk J, Brandt U, Lill R: Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I. Mol Cell Biol 2009, 29(22):6059-6073.
- [68]Dieteren CEJ, Willems PHGM, Vogel RO, Swarts HG, Fransen J, Roepman R, Crienen G, Smeitink JAM, Nijtmans LGJ, Koopman WJH: Subunits of Mitochondrial Complex I Exist as Part of Matrix- and Membrane-associated Subcomplexes in Living Cells. J Biol Chem 2008, 283(50):34753-34761.
- [69]Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder P, Korn B, Kühne R, Oschkinat H: The oxidized subunit B8 from human complex I adopts a thioredoxin fold. Structure 2004, 12(9):1645-1654.
- [70]Brandt U: Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 2006, 75:69-92.
- [71]Johnson DC, Dean DR, Smith AD, Johnson MK: Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 2005, 74:247-281.
- [72]Szklarczyk R, Huynen M, Snel B: Complex fate of paralogs. BMC Evol Biol 2008, 8(1):337. BioMed Central Full Text
- [73]Pál C, Papp B, Lercher MJ: An integrated view of protein evolution. Nat Rev Genet 2006, 7(5):337-348.
- [74]Drummond DA, Raval A, Wilke CO: A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 2006, 23(2):327-337.
- [75]Schug A, Weigt M, Onuchic JN, Hwa T, Szurmant H: High-resolution protein complexes from integrating genomic information with molecular simulation. Proc Natl Acad Sci U S A 2009, 106(52):22124-22129.
- [76]Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M: Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A 2011, 108(49):E1293-E1301.
- [77]Sreekumar J, ter Braak CJ, van Ham RC, van Dijk AD: Correlated mutations via regularized multinomial regression. BMC Bioinforma 2011, 12:444. BioMed Central Full Text
- [78]Burger L, van Nimwegen E: Disentangling direct from indirect co-evolution of residues in protein alignments. PLoS Comput Biol 2010, 6(1):e1000633.
- [79]Pazos F, Valencia A: In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 2002, 47(2):219-227.
- [80]Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2006, 35(suppl 1):D5-D12.
- [81]Söding J: Protein homology detection by HMM–HMM comparison. Bioinformatics 2005, 21(7):951-960.
- [82]Rice P, Longden I, Bleasby A: EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 2000, 16(6):276-277.
- [83]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9(4):286-298.
- [84]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
- [85]Li K-B: ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 2003, 19(12):1585-1586.
- [86]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755-763.
- [87]Strang G: Introduction to Linear Algebra. Wellesley-Cambridge Press, In.; 1998.
- [88]Kann MG, Shoemaker BA, Panchenko AR, Przytycka TM: Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 2009, 385(1):91-98.
- [89]R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
- [90]Borg I, Groenen PJF: Modern Multidimensional Scaling. Theory and Applications, Springer; 2005.
- [91]Singer MS, Vriend G, Bywater RP: Prediction of protein residue contacts with a PDB-derived likelihood matrix. Protein Eng 2002, 15(9):721-725.
- [92]Lê S, Josse J, Husson F: FactoMineR: An R Package for Multivariate Analysis. J Stat Softw 2008, 25(1):1-18.
- [93]Vogel RO, Smeitink JAM, Nijtmans LGJ: Human mitochondrial complex I assembly: a dynamic and versatile process. Biochim Biophys Acta 2007, 1767(10):1215-1227.
- [94]Carroll J, Shannon RJ, Fearnley IM, Walker JE, Hirst J: Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem 2002, 277(52):50311-50317.
- [95]Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J: GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 2001, 276(42):38345-38348.
- [96]Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al.: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437(7062):1173-1178.
- [97]Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA: Oxidative Damage to Mitochondrial Complex I Due to Peroxynitrite. J Biol Chem 2003, 278(39):37223-37230.
- [98]Mishmar D, Ruiz-Pesini E, Mondragon-Palomino M, Procaccio V, Gaut B, Wallace DC: Adaptive selection of mitochondrial complex I subunits during primate radiation. Gene 2006, 378:11-18.
- [99]Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, Venselaar H, Hoefs S, Gloerich J, Kronick J, Hutchin T, et al.: Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 2010, 12(3):283-294.
- [100]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39(Database issue):D561-568.