期刊论文详细信息
BMC Systems Biology
Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model
John J Tyson1  William T Baumann3  Layne T Watson2  Katherine C Chen1  Teeraphan Laomettachit4  Cihan Oguz1 
[1] Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA;Departments of Computer Science and Mathematics, Virginia Tech, Blacksburg, Virginia 24061, USA;Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA;Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
关键词: Phenotype competition;    Sensitivity analysis;    Differential evolution;    Latin hypercube sampling;    Phenotypic constraints;    Model reduction;    ODE model;    Cell cycle;    Budding yeast;    Optimization;   
Others  :  1142722
DOI  :  10.1186/1752-0509-7-53
 received in 2012-10-07, accepted in 2013-06-19,  发布年份 2013
PDF
【 摘 要 】

Background

Parameter estimation from experimental data is critical for mathematical modeling of protein regulatory networks. For realistic networks with dozens of species and reactions, parameter estimation is an especially challenging task. In this study, we present an approach for parameter estimation that is effective in fitting a model of the budding yeast cell cycle (comprising 26 nonlinear ordinary differential equations containing 126 rate constants) to the experimentally observed phenotypes (viable or inviable) of 119 genetic strains carrying mutations of cell cycle genes.

Results

Starting from an initial guess of the parameter values, which correctly captures the phenotypes of only 72 genetic strains, our parameter estimation algorithm quickly improves the success rate of the model to 105–111 of the 119 strains. This success rate is comparable to the best values achieved by a skilled modeler manually choosing parameters over many weeks. The algorithm combines two search and optimization strategies. First, we use Latin hypercube sampling to explore a region surrounding the initial guess. From these samples, we choose ∼20 different sets of parameter values that correctly capture wild type viability. These sets form the starting generation of differential evolution that selects new parameter values that perform better in terms of their success rate in capturing phenotypes. In addition to producing highly successful combinations of parameter values, we analyze the results to determine the parameters that are most critical for matching experimental outcomes and the most competitive strains whose correct outcome with a given parameter vector forces numerous other strains to have incorrect outcomes. These “most critical parameters” and “most competitive strains” provide biological insights into the model. Conversely, the “least critical parameters” and “least competitive strains” suggest ways to reduce the computational complexity of the optimization.

Conclusions

Our approach proves to be a useful tool to help systems biologists fit complex dynamical models to large experimental datasets. In the process of fitting the model to the data, the tool identifies suggestive correlations among aspects of the model and the data.

【 授权许可】

   
2013 Oguz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328132452791.pdf 751KB PDF download
Figure 8. 57KB Image download
Figure 7. 51KB Image download
Figure 6. 66KB Image download
Figure 5. 84KB Image download
Figure 4. 61KB Image download
Figure 3. 60KB Image download
Figure 1. 57KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Hlavacek WS: How to deal with large models? Mol Syst Biol 2009, 5:240.
  • [2]Alon U: An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC Mathematical & Computational Biology). London: Chapman and Hall/CRC; 2006.
  • [3]Hood L, Heath J, Phelps M, Lin B: Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306(5696):640-643.
  • [4]Kitano H: Systems biology: a brief overview. Science 2002, 295(5560):1662-1664.
  • [5]Tyson JJ, Chen K, Novak B: Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2001, 2(12):908-916.
  • [6]April J, Glover F, Kelly JP, Laguna M: Simulation-based optimization: practical introduction to simulation optimization. Proceedings of the 2003 Winter Simulation Conference: December 7–10 2003; New Orleans, Louisiana 2003, 71-78.
  • [7]Sun J, Garibaldi JM, Hodgman C: Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE-ACM T Comput Bi 2012, 9(1):185-202.
  • [8]Price KV, Storn RM, Lampinen JA: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series, Berlin: Springer-Verlag; 2005.
  • [9]Villaverde AF, Egea JA, Banga JR: A cooperative strategy for parameter estimation in large scale systems biology models. BMC Syst Biol 2012, 6:75. BioMed Central Full Text
  • [10]Bentele M, Lavrik I, Ulrich M, Stößer S, Heermann DW, Kalthoff H, Krammer PH, Eils R: Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 2004, 166(6):839-851.
  • [11]Cho K, Shin S, Kolch W, Wolkenhauer O: Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method: A case study for the TNF alpha-mediated NF-kappa B signal transduction pathway. Simul-T Soc Mod Sim 2003, 79(12):726-739.
  • [12]van Riel NAW: Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-base experiments. Brief Bioinform 2006, 7(4):364-374.
  • [13]Apgar JF, Witmer DK, White FM, Tidor B: Sloppy models, parameter uncertainty, and the role of experimental design. Mol Biosyst 2010, 6(10):1890-1900.
  • [14]Degenring D, Froemel C, Dikta G, Takors R: Sensitivity analysis for the reduction of complex metabolism models. J Process Contr 2004, 14(7):729-745.
  • [15]Morgan D: Cell Cycle. Oxford: Oxford University Press; 2006.
  • [16]Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ: Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004, 15(8):3841-3862.
  • [17]Santner TJ, Williams B, Notz W: The Design and Analysis of Computer Experiments. New York: Springer-Verlag; 2003.
  • [18]Schmidt H, Madsen MF, Dano S, Cedersund G: Complexity reduction of biochemical rate expressions. Bioinformatics 2008, 24(6):848-854.
  • [19]Berthoumieux S, Brilli M, Kahn D, De Jong H, Cinquemani E: On the identifiability of metabolic network models. J Math Biol 2012, 1-38.
  • [20]Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmueller U, Timmer J: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 2009, 25(15):1923-1929.
  • [21]Balsa-Canto E, Alonso AA, Banga JR: An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst Biol 2010, 4:11. BioMed Central Full Text
  • [22]Chis OT, Banga JR, Balsa-Canto E: Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods. PLOS ONE 2011, 6(11):e27755.
  • [23]Raue A, Kreutz C, Maiwald T, Klingmueller U, Timmer J: Addressing parameter identifiability by model-based experimentation. IET Syst Biol 2011, 5(2):120-U78.
  • [24]Mitchison JM: The Biology of the Cell Cycle. Cambridge: Cambridge University Press; 1971.
  • [25]Laomettachit T: Mathematical modeling approaches for dynamical analysis of protein regulatory networks with applications to the budding yeast cell cycle and the circadian rhythm in cyanobacteria. PhD thesis, Virginia Institute of Technology 2011. [http://scholar.lib.vt.edu/theses/available/etd-11072011-021528/ webcite]
  • [26]Budding Yeast Cell Cycle Homepage [http://mpf.biol.vt.edu/research/budding_yeast_model/pp/ webcite]
  • [27]Storn R: On the usage of differential evolution for function optimization. Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society [NAFIPS ’96], Berkeley, CA: IEEE 1996, 519-523.
  • [28]Ma W, Lai L, Ouyang Q, Tang C: Robustness and modular design of the Drosophila segment polarity network. Mol Syst Biol 2006, 2:270.
  • [29]Yao G, Tan C, West M, Nevins JR, You L: Origin of bistability underlying mammalian cell cycle entry. Mol Syst Biol 2011, 7:485.
  • [30]Ingolia NT, Murray AW: The ups and downs of modeling the cell cycle. Curr Biol 2004, 14(18):R771-R777.
  • [31]Lehar J, Krueger A, Zimmermann G, Borisy A: High-order combination effects and biological robustness. Mol Syst Biol 2008, 4:215.
  • [32]Moriya H, Shimizu-Yoshida Y, Kitano H: In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2006, 2(7):e111.
  • [33]Cross FR, Schroeder L, Bean JM: Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiae is not essential but contributes to cell cycle robustness. Genetics 2007, 176(3):1541-1555.
  • [34]Panning TD, Watson LT, Allen NA, Chen KC, Shaffer CA, Tyson JJ: Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J Global Optim 2008, 40(4):719-738.
  文献评价指标  
  下载次数:85次 浏览次数:28次