期刊论文详细信息
BMC Microbiology
Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus
Koichi Hasegawa3  Manuel Mota1  Yoriko Ikuyo3  Cláudia S L Vicente2 
[1] INIAV/Unidade Estratégica de Investigação e Serviços de Sistemas Agrários e Florestais e Sanidade Vegetal Av. da República, Quinta do Marquês, Oeiras 2784-159, Portugal;ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora 7002-554, Portugal;Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
关键词: Pine wilt disease;    Oxidative stress;    Catalase;    Bursaphelenchus xylophilus;   
Others  :  1142285
DOI  :  10.1186/1471-2180-13-299
 received in 2013-08-16, accepted in 2013-12-18,  发布年份 2013
PDF
【 摘 要 】

Background

Pine wilt disease (PWD) caused by the pinewood nematode Bursaphelenchus xylophilus is one of the most serious forest diseases in the world. The role of B. xylophilus-associated bacteria in PWD and their interaction with the nematode, have recently been under substantial investigation. Several studies report a potential contribution of the bacteria for the PWD development, either as a helper to enhance the pathogenicity of the nematode or as a pathogenic agent expressing interesting traits related to lifestyle host-adaptation.

Results

We investigated the nematode-bacteria interaction under a severe oxidative stress (OS) condition using a pro-oxidant hydrogen peroxide and explored the adhesion ability of these bacteria to the cuticle surface of the nematodes. Our results clearly demonstrated a beneficial effect of the Serratia spp. (isolates LCN-4, LCN-16 and PWN-146) to B. xylophilus under the OS condition. Serratia spp. was found to be extremely OS-resistant, and promote survival of B. xylophilus and down-regulate two B. xylophilus catalase genes (Bxy-ctl-1 and Bxy-ctl-2). In addition, we show that the virulent isolate (Ka4) of B. xylophilus survives better than the avirulent (C14-5) isolate under the OS condition. The bacterial effect was transverse for both B. xylophilus isolates. We could not observe a strong and specific adhesion of these bacteria on the B. xylophilus cuticle surface.

Conclusions

We report, for the first time, that B. xylophilus associated bacteria may assist the nematode opportunistically in the disease, and that a virulent B. xylophilus isolate displayed a higher tolerance towards the OS conditions than an avirulent isolate.

【 授权许可】

   
2013 Vicente et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328024016560.pdf 716KB PDF download
Figure 4. 79KB Image download
Figure 3. 97KB Image download
Figure 2. 78KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Mamiya Y: Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annu Rev Plant Physiol Plant Mol Biol 1983, 21:201-220.
  • [2]Mota MM, Vieira P: Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems. Netherlands: Springer; 2008.
  • [3]Zhao B, Futai K, Sutherland JR, Takeuchi Y: Pine Wilt Disease. Kato Bunmeisha: Springer; 2008.
  • [4]Zhu LH, Ye J, Negi S, Xu XL, Wang ZL: Pathogenicity of aseptic Bursaphelenchus xylophilus. PLoS One 2012, 7:e38095.
  • [5]Zhao BG, Liu Y, Lin F: Effects of bacteria associated with pine wood nematode (Bursaphelenchus xylophilus) on development and egg production of the nematode. J Phytopathol 2007, 155:26-30.
  • [6]Kawazu K, Zhang H, Yamashita H, Kanzaki H: Relationship between the pathogenecity of pine wood nematode, Bursaphelenchus xylophilus, and phenylacetic acid production. Biosci Biotech Biochem 1996, 60:1413-1415.
  • [7]Zhao BGZ, Ang HLW, An SFH, An ZMH: Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China. Nematology 2003, 5:899-906.
  • [8]Vicente CSL, Nascimento F, Espada M, Barbosa P, Mota M, Glick BR, Oliveira S: Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. PloS one 2012, 7:e46661.
  • [9]Cheng XY, Tian XL, Wang YS, Lin RM, Mao ZC, Chen N, Xie BY: Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Scientific reports 1869, 2013:3.
  • [10]Mehdy MC: Active oxygen species in plant defense against pathogens. Plant Physiol 1994, 105:467-472.
  • [11]Bolwell GP, Butt VS, Davies DR, Zimmerlin A: The origin of the oxidative burst in plants. Free radical Res 1995, 23:517-532.
  • [12]Torres MA, Jones JDG, Dangl JL: Reactive oxygen species signaling in response to pathogens. Plant Physiol 2006, 141:373-378.
  • [13]Torres MA: ROS in biotic interactions. Physiol plantarum 2010, 138:414-429.
  • [14]Quan LJ, Zhang B, Shi WS, Li HY: Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integrative Plant Biol 2008, 50:2-18.
  • [15]Dubreuil G, Deleury E, Magliano M, Jaouannet M, Abad P, Rosso MN: Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita, are required for successful development within the host. Int J Parasitol 2011, 41:385-396.
  • [16]Lamb C, Dixon R: The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:251-275.
  • [17]Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS: Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 2008, 121:267-280.
  • [18]Fones H, Preston GM: Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS microbiology letters 2012, 327:1-8.
  • [19]Guo M, Block A, Bryan CD, Becker DF, Alfano JR: Pseudomonas syringae catalases are collectively required for plant pathogenesis. J Bacteriol 2012, 194:5054-5064.
  • [20]Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, Bender CL: Involvement of coronatine-inducible reactive oxygen species in bacterial speck disease of tomato. Plant Signaling and Behavior 2009, 4:237-239.
  • [21]Henkle-Dührsen K, Kampkötter A: Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol 2001, 114:129-142.
  • [22]Molinari S: Changes of catalase and SOD activities in the early response of tomato to Meloidogyne attack. Nematol Mediterr 1998, 26:167-172.
  • [23]Robertson L, Robertson WM, Sobczak M, Helder J, Tetaud E, Ariyanayagam MR, Ferguson MAJ, Fairlamb A, Jones JT: Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol 2000, 111:41-49.
  • [24]Jones J, Reavy B, Smant G, Prior A: Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis. Gene 2004, 324:47-54.
  • [25]Bellafiore S, Shen Z, Rosso MN, Abad P, Shih P, Briggs SP: Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS pathogens 2008, 4:e1000192.
  • [26]Hirao T, Fukatsu E, Watanabe A: Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC plant biology 2012, 12:13. BioMed Central Full Text
  • [27]Santos CSS, Vascocelos MW: Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with pine wood nematode. Eur J Plant Pathol 2012, 132:407-418.
  • [28]Shinya R, Morisaka H, Takeuchi Y, Futai K, Ueda M: Making headway in understanding pine wilt disease: What do we perceive in the postgenomic era? J Biosci Bioeng 2013, 116:1-8.
  • [29]Molinari S: Antioxidant enzymes in (a)virulent populations of root-knot nematodes. Nematology 2009, 11:689-697.
  • [30]Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai IJ, Aseffa SA, Cock PJA, Otto TD, Hunt M, Reid AJ, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson MC, Miwa J, Maule AG, Sahashi N, Jones JT, Berriman M: Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 2011, 7:e1002219.
  • [31]Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K: Secretome analysis of pine wood nematode Bursaphelenchus xylophilus reveals the tangled roots of parasitism and its potential for molecular mimicry. PloS one 2013, 8:e67377.
  • [32]Jamet A, Sigaud S, Van de Sype G, Puppo A, Hérouart D: Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe In 2003, 16:217-225.
  • [33]Sykiotis GP, Bohmann D: Stress-activated Cap’n’collar transcription factors in 43. aging and human disease. Sci Signal 2010, 3:re3.
  • [34]Bowerman B, Eaton BA, Priess JR: skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 1992, 68:1061-1075.
  • [35]Park SK, Tedesco PM, Johnson TE: Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell 2009, 8:258-269.
  • [36]Shinya R, Morisaka H, Takeuchi Y, Ueda M, Futai K: Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach. Phytopathol 2010, 100:1289-1297.
  • [37]Li Z, Liu X, Chu Y, Wang Y, Zhang Q, Zhou X: Cloning and characterization of a 2-Cys peroxiredoxin in the pine wood nematode, Bursaphelenchus xylophilus, a putative genetic factor facilitating the infestation. Int J Biol Scie 2011, 7:823-836.
  • [38]Wu XQ, Yuan WM, Tian XJ, Fan B, Fang X, Ye JR, Ding XL: Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus xylophilus with different virulence. Int J Biol Sci 2013, 9:34-44.
  • [39]Grimont F, Grimont PAD: The Genus Serratia. Proc Natl Acad Sci USA 2006, 6:219-244.
  • [40]Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, Lelie D: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. App Environ Microbiol 2009, 75:748-757.
  • [41]Zhang Q, Weyant R, Steigerwalt AG, White LA, Melcher U, Bruton BD, Pair SD, Mitchell FL, Fletcher J: Genotyping of Serratia marcescens strains associated with cucurbit yellow vine disease by repetitive elements-based polymerase chain reaction and DNA-DNA hybridization. Phytopathol 2003, 93:1240-1246.
  • [42]Schulz B, Boyle C: The endophytic continuum. Mycol Res 2005, 109:661-686.
  • [43]Aikawa T, Kikuchi T: Estimation of virulence of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) based on its reproductive ability. Nematology 2007, 9:371-377.
  • [44]Takemoto S: Population ecology of Bursaphelenchus xylophilus. Kato Bunmeisha: Springer; 2008. [Pine Wilt Disease] Volume 108
  • [45]Vicente CSL, Nascimento F, Espada M, Mota M, Oliveira S: Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. A van Leeuw J Microb 2011, 2011(100):477-481.
  • [46]Kock B, Jensen LE, Nybroe O: A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Meth 2001, 45:187-195.
  • [47]Højberg O, Schnider U, Winterler HV, Sørensen J, Haas D: Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. App Environ Microbiol 1999, 65:4085-4093.
  • [48]Bao Y, Lies DP, Fu H, Roberts GP: An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene 1991, 109:167-168.
  • [49]Lambertsen L, Sternberg C, Molin S: Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 2004, 6:726-732.
  • [50]Han ZM, Hong YD, Zhao BG: A study on pathogenicity of bacteria carried by pine wood nematodes. J Phytopathol 2003, 151:683-689.
  • [51]Shaham S: Methods in cell biology. The C. elegans Research Community, WormBook; 2006. [WormBook] doi/10.1895/wormbook.1.7.1, http://www.wormbook.org webcite
  • [52]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25:402-408.
  • [53]Rozen S, Skaletzki H: Primer3 on the www for general users and for biologist programmers. Humana PressKrawetz S, Misener S; 2000:365-386. [Bioinformatics Methods and Protocols: Methods in Molecular Biology Totowa]
  文献评价指标  
  下载次数:31次 浏览次数:21次