期刊论文详细信息
BMC Evolutionary Biology
Sequence analysis of mitochondrial ND1 gene can reveal the genetic structure and origin of Bactrocera dorsalis s.s.
Jin-Tian Lin3  Fei-Liang Gong3  Xian-Feng Li3  Hua-Liang He3  Jun Ma1  Shu-Ying Bin3  Hong-Mei Li2  Zhong-Zhen Wu3 
[1]Guangdong Inspection and Quarantine Technology Center, Guangdong Entry-Exit Inspection and Quarantine Bureau, Tower A, Guojian Building, No.66 Huacheng Avenue, Zhujiang Xincheng, Guangzhou 510225, PR China
[2]College of Life Sciences, Zhongkai University of Agriculture and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
[3]Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
关键词: Mitochondrial ND1;    Bactrocera dorsalis s.s;    Origin;    Genetic structure;   
Others  :  857662
DOI  :  10.1186/1471-2148-14-55
 received in 2013-10-26, accepted in 2014-03-14,  发布年份 2014
PDF
【 摘 要 】

Background

The oriental fruit fly, Bactrocera dorsalis s.s., is one of the most important quarantine pests in many countries, including China. Although the oriental fruit fly has been investigated extensively, its origins and genetic structure remain disputed. In this study, the NADH dehydrogenase subunit 1 (ND1) gene was used as a genetic marker to examine the genetic diversity, population structure, and gene flow of B. dorsalis s.s. throughout its range in China and southeast Asia.

Results

Haplotype networks and phylogenetic analysis indicated two distinguishable lineages of the fly population but provided no strong support for geographical subdivision in B. philippinensis. Demographic analysis revealed rapid expansion of B. dorsalis s.s. populations in China and Southeast Asia in the recent years. The greatest amount of genetic diversity was observed in Manila, Pattaya, and Bangkok, and asymmetric migration patterns were observed in different parts of China. The data collected here further show that B. dorsalis s.s. in Yunnan, Guangdong, and Fujian Provinces, and in Taiwan might have different origins within southeast Asia.

Conclusions

Using the mitochondrial ND1 gene, the results of the present study showed B. dorsalis s.s. from different parts of China to have different genetic structures and origins. B. dorsalis s.s. in China and southeast Asia was found to have experienced rapid expansion in recent years. Data further support the existence of two distinguishable lineages of B. dorsalis s.s. in China and indicate genetic diversity and gene flow from multiple origins.

The sequences in this paper have been deposited in GenBank/NCBI under accession numbers KC413034–KC413367.

【 授权许可】

   
2014 Wu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723083234470.pdf 1259KB PDF download
56KB Image download
112KB Image download
69KB Image download
80KB Image download
【 图 表 】

【 参考文献 】
  • [1]White IM, Elson-Harris MM: Fruit flies of economic significance: their identification and bionomics. Wallingford UK: CAB International; 1992.
  • [2]Drew RAI, Hancock DL: The Bactrocera dorsalis complex of fruit flies (Diptera: tephritidae: dacinae) in Asia. Bull Entomol Res Suppl 1994, 2(i-iii):1-68.
  • [3]Iwahashi O: Aedeagal length of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: tephritidae), and its sympatric species in Thailand and the evolution of a longer and shorter aedeagus in the parapatric species of B. Dorsalis. Appl Entomol Zool 2001, 36(3):289-297.
  • [4]Krosch MN, Schutze MK, Armstrong KF, Boontop Y, Boykin LM, Chapman TA, Englezou A, Cameron SL, Clarke AR: Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis s.l. (Diptera: tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst Entomol 2013, 38(1):2-13.
  • [5]Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomic A, Cameron SL, Hailstones D, Clarke AR: Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: tephritidae) in southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data. BMC Evol Biol 2012, 12:130. BioMed Central Full Text
  • [6]DE H: Pacific insects monograph 31: The fruit flies (Diptera: tephritidae) of Thailand and bordering countries. Honolulu: Bernice P Bishop Museum; 1973.
  • [7]Xie YZ: Study on the trypetidae or fruit-flies of China. Sinenia 1937, 2:103-226.
  • [8]Wang XJ: The fruit flies of the East Asian region. Acta Zootaxon Sinica 1996, 54:49-54.
  • [9]Ye H, Chen P: Expansion tendency of Bactrocera dorsalis in China. In Research on biological invasions in China. Edited by Wang FH, Guo JY, Zhang F. Beijing: Science Press; 2009:90-92.
  • [10]Xie Q, Zhang RJ: Study advance on biology and ecology of Bactrocera dorsalis (Hendel) and its control. Ecol Sci 2005, 24:52-56.
  • [11]Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski LM, Gasperi G, Malacrida AR, Gugliemino CR: Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Mol Ecol 2007, 16(17):3522-3532.
  • [12]Li Y, Li Z, Wu G, Wang H, Deng Y, Gong X: A primary on the population genetics relationship of Bactrocera dorsalis (Diptera: tephritidae) based on mtDNA ND 6 gene. Biol Control: Chinese J; 2009:42-50.
  • [13]Li W, Yang L, Tang K, Zeng L, Liang G: Microsatellite polymorphism of Bactrocera dorsalis (Hendel) populations in China. Acta Entomol Sin 2007, 50(12):1255-1262.
  • [14]Li Y, Wu Y, Chen H, Wu J, Li Z: Population structure and colonization of Bactrocera dorsalis (Diptera: tephritidae) in China, inferred from mtDNA COI sequences. J Appl Entomol 2012, 136(4):241-251.
  • [15]Wan X, Nardi F, Zhang B, Liu Y: The oriental fruit Fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS One 2011, 6(10):e25238.
  • [16]Behura SK: Molecular marker systems in insects: current trends and future avenues. Mol Ecol 2006, 15(11):3087-3113.
  • [17]Cameron SL, Dowton M, Castro LR, Ruberu K, Whiting MF, Austin AD, Diement K, Stevens J: Mitochondrial genome organization and phylogeny of two vespid wasps. Genome 2008, 51(10):800-808.
  • [18]Hua J, Li M, Dong P, Cui Y, Xie Q, Bu W: Comparative and phylogenomic studies on the mitochondrial genomes of pentatomomorpha (Insecta: hemiptera: heteroptera). BMC Genomics 2008, 9:610. BioMed Central Full Text
  • [19]Nardi F, Carapelli A, Dallai R, Frati F: The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol Biol 2003, 12(6):605-611.
  • [20]Negrisolo E, Babbucci M, Patarnello T: The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects. BMC Genomics 2011, 12:221. BioMed Central Full Text
  • [21]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123(3):585-595.
  • [22]Miura O: Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecol Res 2007, 22(6):876-883.
  • [23]Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J: The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 2005, 14(14):4207-4219.
  • [24]Havill NP, Montgomery ME, Yu GY, Shiyake S, Caccone A: Mitochondrial DNA from hemlock woolly adelgid (Hemiptera: adelgidae) suggests cryptic speciation and pinpoints the source of the introduction to eastern north America. Ann Entomol Soc Am 2006, 99(2):195-203.
  • [25]Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu S: An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of Two alien whiteflies in China. PLoS One 2011, 6(1):e16061.
  • [26]Ueda S, Brown JK: First report of the Q biotype of Bemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparasitica 2006, 34(4):405-411.
  • [27]Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 1994, 87(6):651-701.
  • [28]Birungi J, Munstermann LE: Genetic structure of Aedes albopictus (Diptera: culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann Entomol Soc Am 2002, 95(1):125-132.
  • [29]Elfekih S, Makni M, Haymer DS: Genetic diversity of ND5 mitochondrial patterns in Ceratitis capitata (Diptera: tephritidae) populations from Tunisia. Ann Soc Entomol Fr 2010, 46(3–4):464-470.
  • [30]Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H: Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. P Roy Soc B–Biol Sci 2008, 275(1632):237-247.
  • [31]Chen P, Ye H: Relationship among five populations of Bactrocera dorsalis based on mitochondrial DNA sequences in western Yunnan. China. J Appl Entomol 2008, 132(7):530-537.
  • [32]Liu J, Shi W, Ye H: Population genetics analysis of the origin of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: tephritidae), in northern Yunnan province. China. Entomol Sci 2007, 10(1):11-19.
  • [33]Shi W, Kerdelhue C, Ye H: Population genetics of the oriental fruit fly, Bactrocera dorsalis (Diptera: tephritidae), in Yunnan (China) based on mitochondrial DNA sequences. Environ Entomol 2005, 34(4):977-983.
  • [34]Miller NJ, Dorhout DL, Rice ME, Sappington TW: Mitochondrial DNA variation and range expansion in Western Bean Cutworm (Lepidoptera: noctuidae): no evidence for a recent population bottleneck. Environ Entomol 2009, 38(1):274-280.
  • [35]Sun X, Cui L, Li Z: Diversity and phylogeny of Wolbachia infecting Bactrocera dorsalis (Diptera : tephritidae) populations from China. Environ Entomol 2007, 36(5):1283-1289.
  • [36]Hoffmann AA, Clancy DJ, Merton E: Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics 1994, 136(3):993-999.
  • [37]Montchamp-Moreau C, Ferveur JF, Jacques M: Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics 1991, 129(2):399-407.
  • [38]Riegler M, Stauffer C: Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, tephritidae). Mol Ecol 2002, 11(11):2425-2434.
  • [39]Kittayapong P, Baisley KJ, Baimai V, O’Neill SL: Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: culicidae). J Med Entomol 2000, 37(3):340-345.
  • [40]De Barro PJ: Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol Ecol 2005, 14(12):3695-3718.
  • [41]Ahmed MZ, Ren S, Mandour NS, Greeff JM, Qiu B: Prevalence of wolbachia supergroups A and B in Bemisia tabaci (Hemiptera: aleyrodidae) and some of its natural enemies. J Econ Entomol 2010, 103(5):1848-1859.
  • [42]Lushai G, Allen JA, Goulson D, MacLean N, Smith DAS: The butterfly Danaus chrysippus (L.) in east Africa comprises polyphyletic, sympatric lineages that are, despite behavioural isolation, driven to hybridization by female-biased sex ratios. Biol J Linn Soc 2005, 86(1):117-131.
  • [43]Smith DAS, Gordon IJ, Allen JA: Reinforcement in hybrids among once isolated semispecies of Danaus chrysippus (L.) and evidence for sex chromosome evolution. Ecol Entomol 2010, 35(1):77-89.
  • [44]Rogers AR: Genetic evidence for a pleistocene population explosion. Evolution 1995, 49(4):608-615.
  • [45]Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK: Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol 2005, 50:293-319.
  • [46]Nei M, Li WH: Mathematical model for studying genetic variation in terms of restriction endonucleases. P Natl Acad Sci Usa 1979, 76(10):5269-5273.
  • [47]Grant WS, Bowen BW: Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 1998, 89(5):415-426.
  • [48]Templeton AR: The theory of speciation via the founder principle. Genetics 1980, 94(4):1011-1038.
  • [49]Shi W, Kerdelhue C, Ye H: Population genetic structure of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: tephritidae) from Yunnan province (China) and nearby sites across the border. Genetica 2010, 138(3):377-385.
  • [50]Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F: Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, tephritidae). Mol Ecol 2005, 14(9):2729-2738.
  • [51]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [52]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [53]Bandelt H, Forster P, Roehl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16(1):37-48.
  • [54]Forster P, Torroni A, Renfrew C, Roehl A: Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Mol Biol Evol 2001, 18(10):1864-1881.
  • [55]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [56]Beerli P: Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 2006, 22(3):341-345.
  • [57]Dupanloup I, Schneider S, Excoffier L: A simulated annealing approach to define the genetic structure of populations. Mol Ecol 2002, 11(12):2571-2581.
  • [58]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10(3):564-567.
  • [59]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27(2):209-220.
  • [60]Fu Y: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147(2):915-925.
  • [61]Stopar K, Ramsak A, Trontelj P, Malej A: Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: scyphozoa: semaeostomeae) across European seas. Mol Phylogenet Evol 2010, 57(1):417-428.
  • [62]Harpending HC: Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 1994, 66(4):591-600.
  • [63]Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992, 9(3):552-569.
  文献评价指标  
  下载次数:50次 浏览次数:60次