期刊论文详细信息
BMC Genomics
Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing
Martin Figeac1  Claude Preudhomme4  Christophe Roumier4  Nathalie Grardel5  Aurélie Caillault5  Sabine Quief2  Céline Villenet1  Marc Duez6  Mikaël Salson3  Mathieu Giraud3 
[1] Functional and Structural Genomic Platform, Université Lille 2, IFR 114, Lille, France;Lille Institute for Cancer Research (IRCL), Lille, France;Laboratoire d’Informatique Fondamentale de Lille (LIFL, UMR CNRS 8022, Université Lille 1) and Inria Lille – Cité scientifique – Bâtiment M3, 59655 Villeneuve d’Ascq, France;Inserm U-837, Cancer Research Institute, Lille, France;Department of Hematology, Biology and Pathology Center, Lille, France;SIRIC OncoLille, Lille, France
关键词: Minimal residual disease follow-up;    Leukemia;    Immunology;    Repertoire sequencing;    V(D)J recombinations;    High-throughput sequencing;    Sequence analysis;   
Others  :  1217188
DOI  :  10.1186/1471-2164-15-409
 received in 2013-10-23, accepted in 2014-05-08,  发布年份 2014
PDF
【 摘 要 】

Background

V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up. However, the full breadth of lymphocyte diversity is not fully understood.

Results

We propose new algorithms that process high-throughput sequencing (HTS) data to extract unnamed V(D)J junctions and gather them into clones for quantification. This analysis is based on a seed heuristic and is fast and scalable because in the first phase, no alignment is performed with germline database sequences. The algorithms were applied to TR γ HTS data from a patient with acute lymphoblastic leukemia, and also on data simulating hypermutations. Our methods identified the main clone, as well as additional clones that were not identified with standard protocols.

Conclusions

The proposed algorithms provide new insight into the analysis of high-throughput sequencing data for leukemia, and also to the quantitative assessment of any immunological profile. The methods described here are implemented in a C++ open-source program called Vidjil.

【 授权许可】

   
2014 Giraud et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705020905564.pdf 813KB PDF download
Figure 6. 33KB Image download
Figure 5. 39KB Image download
Figure 4. 28KB Image download
Figure 3. 62KB Image download
Figure 2. 47KB Image download
Figure 1. 11KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Tonegawa S: Somatic generation of antibody diversity. Nature 1983, 302(5909):575-581.
  • [2]Market E, Papavasiliou FN: V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol 2003, 1(1):16.
  • [3]van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JHJM, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA: Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 2003, 17(12):2257-2317.
  • [4]Warren RL, Freeman JD, Zeng T, Choe G, Munro S, Moore R, Webb JR, Holt RA: Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 2011, 21(5):790-797.
  • [5]van Dongen JJM, Szczepański T, Adriaansen HJ: Immunobiology of leukemia. In: Henderson, ES, GM Lister, TA (ed.) 7th edn. Leukemia: Saunders; 2002 pp. 85–130
  • [6]Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Bottcher S, Ritgen M, Almeida J, Lhermitte L, Asnafi V, Mendonca A, de Tute R, Cullen M, Sedek L, Vidriales MB, Perez JJ, te Marvelde JG, Mejstrikova E, Hrusak O, Szczepanski T, van Dongen JJM, Orfao A: Euroflow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26(9):1986-2010.
  • [7]Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smith E, Campana D, Koscielniak E, Niemeyer C, Schlegel PG, Müller I, Niethammer D, Bader P: Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005, 128(6):774-782.
  • [8]Yousfi Monod M, Giudicelli V, Chaume D, Lefranc M-P: IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioinformatics 2004, 20(Suppl 1):379-85.
  • [9]Brochet X, Lefranc M-P, Giudicelli V: IMGT/V-QUEST: the highly customized and integrated system for IG, and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 2008, 36(Web Server issue):503-508.
  • [10]Lefranc M-P: IMGT, the International ImMunoGeneTics Information System – IMGT Booklet. Cold Spring Harbor Protocols; 2011. doi:10.1101/pdb.top115
  • [11]Alamyar E, Giudicelli V, Li S, Duroux P, Lefranc M-P: IMGT/HighV-QUEST: the IMGT®; web portal for immunoglobulin (IG) or antibody and t cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res 2012., 8(1) doi:10.4172/1745-7580.1000056
  • [12]IMGT®;, the international ImMunoGeneTics information system®; http://imgt.org/ webcite
  • [13]Souto-Carneiro MM, Longo NS, Russ DE, Sun H, Lipsky PE: Characterization of the human Ig heavy chain antigen binding complementarity determining region 3 using a newly developed software algorithm, JoinSolver. J Immunol 2004, 172(11):6790.
  • [14]Arnaout R, Lee W, Cahill P, Honan T, Sparrow T, Weiand M, Nusbaum C, Rajewsky K, Koralov SB: High-resolution description of antibody heavy-chain repertoires in humans. PLoS ONE 2011, 6(8):22365.
  • [15]Ye J, Ma N, Madden TL, Ostell JM: IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013, 41:34-40. doi:10.1093/nar/gkt382
  • [16]Gaëta BA, Malming HR, Jackson KJL, Bain ME, Wilson P, Collins AM: iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 2007, 23(13):1580-1587. PMID: 17463026
  • [17]Munshaw S, Kepler TB: SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements. Bioinformatics 2010, 26(7):867-872.
  • [18]Ohm-Laursen L, Nielsen M, Larsen S. R, Barington T: No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VH replacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements. Immunology 2006, 2(119):265-277.
  • [19]Jackson KJL, Boyd S, Gaëta BA, Collins AM: Benchmarking the performance of human antibody gene alignment utilities using a 454 sequence dataset. Bioinformatics 2010, 26(24):3129-3130.
  • [20]Weinstein JA, Jiang N, Fisher DS, Quake SR, White RA 3rd: High-throughput sequencing of the zebrafish antibody repertoire. Science 2009, 324(5928):807-810.
  • [21]Ben-Hamo R, Efroni S: The whole-organism heavy chain B cell repertoire from zebrafish self-organizes into distinct network features. BMC Syst Biol 2011, 5(1):27. BioMed Central Full Text
  • [22]Castro R, Jouneau L, Pham H-P, Bouchez O, Giudicelli V, Lefranc M-P, Quillet E, Benmansour A, Cazals F, Six A, Fillatreau S, Sunyer O, Boudinot P: Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PLoS Pathogens 2013, 9(1):1003098.
  • [23]Boyd SD, Gaëta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Collins AM: Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 2010, 184(12):6986-6992.
  • [24]Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Fire AZ: Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 2009, 1(12):12-23.
  • [25]Logan AC, Gao H, Wang C, Sahaf B, Jones CD, Marshall EL, Buno I, Armstrong R, Fire AZ, Weinberg KI, Mindrinos M, Zehnder JL, Boyd SD, Xiao W, Davis RW, Miklos DB: High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Nat Acad Sci USA 2011, 108(52):21194-21199.
  • [26]Gawad C, Pepin F, Carlton V, Klinger M, Logan AC, Miklos DB, Faham M, Dahl G, Lacayo N: Massive evolution of the immunoglobulin heavy chain locus in children with B, precursor acute lymphoblastic leukemia. Blood 2012, 120(22):4407-4417. doi:10.1182/blood-2012-05-429811
  • [27]Faham M, Zheng J, Moorhead M, Carlton VEH, Stow P, Coustan-Smith E, Pui C-H, Campana D: Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2012, 120(26):5173-5180.
  • [28]Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M, Krampf MR, Jones CD, Waqar AN, Faham M, Zehnder JL, Miklos DB: Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia 2013, 27:1659-1665. doi:10.1038/leu.2013.52
  • [29]Li S, Lefranc M-P, Alamyar E, Giudicelli V, Duroux P, Freeman JD, Corbin VDA, Scheerlinck J-P, Frohman MA, Cameron PU, Plebanski M, Loveland B, Burrows SR, Papenfuss AT, Gowans EJ, Miles JJ: IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat Commun 2013. 4. doi:10.1038/ncomms3333
  • [30]Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA: Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 2009, 19(10):1817-1824.
  • [31]Warren RL, Nelson BH, Holt RA: Profiling model T-cell metagenomes with short reads. Bioinformatics 2009, 25(4):458-464.
  • [32]Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, Greisman HA, Sabath DE, Wood BL, Robins H: High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med 2012., 4(134) 134ra63. doi:10.1126/scitranslmed.3003656
  • [33]Langerak AW, Brüggemann M, Darzentas N, Catherwood M, Cazzaniga G, Davi F, van Dongen JJM, Evans PAS, Garcia Sanz R, Giudicelli V, Gonzalez D, Groenen PJTA, Hummel M, Lefranc M-P, Macintyre EA, Pott C, Stamatopoulos K: Technical developments: general principles and available technologies. Second ESLHO SymposiumRotterdam: 2013, pp. 11–19
  • [34]Robins H: Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin Immunol 2013,. 25. doi:10.1016/j.coi.2013.09.017
  • [35]Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR: The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 2014, 32:158-168.
  • [36]Benichou J, Ben-Hamo R, Louzoun Y, Efroni S: Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 2012, 135(3):183-191.
  • [37]Chen Z, Collins AM, Wang Y, Gaëta BA: Clustering-based identification of clonally-related immunoglobulin gene sequence sets. Immun Res 2010, 6(Suppl 1):4. BioMed Central Full Text
  • [38]Laserson U, Vigneault F, Gadala-Maria D, Yaari G, Uduman M, Vander Heiden JA, Kelton W, Taek Jung S, Liu Y, Laserson J, Chari R, Lee J-H, Bachelet I, Hickey B, Lieberman-Aiden E, Hanczaruk B, Simen BB, Egholm M, Koller D, Georgiou G, Kleinstein SH, Church GM: High-resolution antibody dynamics of vaccine-induced immune responses. Proc Nat Acad Sci 2014, 111(13):4928-4933. doi:10.1073/pnas.1323862111
  • [39]Brown DG: A survey of seeding for sequence alignment. In Bioinformatics Algorithms: Techniques and Applications. Wiley-Interscience; 2008:126-152.
  • [40]Giudicelli V, Chaume D, Lefranc M-P: IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 2005, 33(S1):256-261.
  • [41]Oprea ML: Antibody repertoires and pathogen recognition: the role of germline diversity and somatic hypermutation. PhD thesis. University of Leeds (1999)
  • [42]Smith DS, Creadon G, Jena PK, Portanova JP, Kotzin BL, Wysocki LJ: Di-and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol 1996, 156(7):2642-2652.
  • [43]Recher M, Hunziker L, Ciurea A, Harris N, Lang KS: Public, private and non-specific antibodies induced by non-cytopathic viral infections. Curr Opin Microbiol 2004, 7(4):426-433.
  文献评价指标  
  下载次数:89次 浏览次数:24次