期刊论文详细信息
BMC Research Notes
Analysis of T-DNA alleles of flavonoid biosynthesis genes in Arabidopsis ecotype Columbia
Brenda SJ Winkel3  Richard F Helm2  Michelle B Price5  Melissa V Ramirez4  Peter A Bowerman1 
[1] Current address: Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA;Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA;Department of Biological Sciences, Blacksburg, VA, 24061, USA;Current address: Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, 80523, USA;Current address: Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
关键词: Transparent testa;    Flavonoid;    Insertional inactivation lines;    Ecotype;    Arabidopsis;   
Others  :  1165772
DOI  :  10.1186/1756-0500-5-485
 received in 2012-04-27, accepted in 2012-08-23,  发布年份 2012
PDF
【 摘 要 】

Background

The flavonoid pathway is a long-standing and important tool for plant genetics, biochemistry, and molecular biology. Numerous flavonoid mutants have been identified in Arabidopsis over the past several decades in a variety of ecotypes. Here we present an analysis of Arabidopsis lines of ecotype Columbia carrying T-DNA insertions in genes encoding enzymes of the central flavonoid pathway. We also provide a comprehensive summary of various mutant alleles for these structural genes that have been described in the literature to date in a wide variety of ecotypes.

Findings

The confirmed knockout lines present easily-scorable phenotypes due to altered pigmentation of the seed coat (or testa). Knockouts for seven alleles for six flavonoid biosynthetic genes were confirmed by PCR and characterized by UPLC for altered flavonol content.

Conclusion

Seven mutant lines for six genes of the central flavonoid pathway were characterized in ecotype, Columbia. These lines represent a useful resource for integrating biochemical and physiological studies with genomic, transcriptomic, and proteomic data, much of which has been, and continues to be, generated in the Columbia background.

【 授权许可】

   
2012 Bowerman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416033554252.pdf 889KB PDF download
Figure 4. 80KB Image download
Figure 3. 128KB Image download
Figure 2. 43KB Image download
Figure 1. 123KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Buer CS, Imin N, Djordjevic MA: Flavonoids: New roles for old molecules. J Integr Plant Biol 2010, 52(1):98-111.
  • [2]Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M: Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 2006, 57:405-430.
  • [3]Prochazkova D, Bousova I, Wilhelmova N: Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011, 82(4):513-523.
  • [4]Koes R, Verweij W, Quattrocchio F: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 2005, 10(5):236-242.
  • [5]Winkel BSJ: The biosynthesis of flavonoids. In The Science of Flavonoids. Edited by Grotewold E. New York: Springer Science & Business Media; 2006:71-95.
  • [6]Austin MB, O’Maille PE, Noel JP: Evolving biosynthetic tangos negotiate mechanistic landscapes. Nat Chem Biol 2008, 4(4):217-222.
  • [7]Crosby KC, Pietraszewska-Bogiel A, Gadella TWJ, Winkel BSJ: Forster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Lett 2011, 585(14):2193-2198.
  • [8]Feller A, Machemer K, Braun EL, Grotewold E: Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 2011, 66(1):94-116.
  • [9]Zhao J, Dixon RA: The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 2010, 15(2):72-80.
  • [10]Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S: How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 2009, 14(3):125-132.
  • [11]Santos CNS, Koffas M, Stephanopoulos G: Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 2011, 13(4):392-400.
  • [12]Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S: Flower color modification by engineering of the flavonoid biosynthetic pathway: Practical perspectives. Biosci Biotechnol Biochem 2010, 74(9):1760-1769.
  • [13]Bürger D: Die morphologischen Mutanten des Göttinger Arabidopsis-Sortiment, einschliesslich der Mutanten mit abweichender Samenfarbe. Arabid Inf Serv 1971, 8:36-42.
  • [14]Koornneef M: Mutations affecting the testa color in Arabidopsis. Arabid Inf Serv 1990, 28:1-4.
  • [15]Koornneef M, Dellaert LW, van der Veen JH: EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 1982, 93(1):109-123.
  • [16]Beemster GTS, De Vusser K, De Tavernier E, De Bock K, Inze D: Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol 2002, 129(2):854-864.
  • [17]Chevalier F, Martin O, Rofidal V, Devauchelle AD, Barteau S, Sommerer N, Rossignol M: Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 2004, 4(5):1372-1381.
  • [18]Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, et al.: Natural variation in light sensitivity of Arabidopsis. Nat Genet 2001, 29(4):441-446.
  • [19]Alonso J, Stepanova A, Leisse T, Kim C, Chen H, Shinn P, Stevenson D, Zimmerman J, Barajas P, Cheuk R, et al.: Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301:653-657.
  • [20]Feinbaum RL, Ausubel FM: Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 1988, 8(5):1985-1992.
  • [21]Burbulis IE, Iacobucci M, Shirley BW: A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 1996, 8(6):1013-1025.
  • [22]Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK: Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis thaliana. Plant Physiol 2001, 126:524-535.
  • [23]Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O: The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology 2006, 16(6):553-563.
  • [24]Shikazono N, Yokota Y, Tanaka A, Watanabe H, Tano S: Molecular analysis of carbon ion-induced mutations in Arabidopsis thaliana. Genes Genet Syst 1998, 73(3):173-179.
  • [25]Saslowsky DE, Dana CD, Winkel-Shirley B: An allelic series for the chalcone synthase locus in Arabidopsis. Gene 2000, 255(2):127-138.
  • [26]Bharti AK, Khurana JP: Molecular characterization of transparent testa (tt) mutants of Arabidopsis thaliana (ecotype Estland) impaired in flavonoid biosynthetic pathway. Plant Sci 2003, 165(6):1321-1332.
  • [27]Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L: Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 2006, 224:96-107.
  • [28]Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B: An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 2003, 53(1–2):247-259.
  • [29]Buer CS, Sukumar P, Muday GK: Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiology 2006, 140(4):1384-1396.
  • [30]Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B: Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12-and MYB111-independent flavonol glycoside accumulation. New Phytol 2010, 188(4):985-1000.
  • [31]Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li XH, Pierick CJ, Dobbs D, Peterson T, et al.: High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. P Natl Acad Sci USA 2010, 107(26):12028-12033.
  • [32]Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B: Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci USA 1998, 95:12432-12437.
  • [33]Owens DK, Crosby KC, Runac J, Howard BA, Winkel BSJ: Biochemical and genetic characterization of Arabidopsis flavanone 3 beta-hydroxylase. Plant Physiology and Biochemistry 2008, 46(10):833-843.
  • [34]Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B: Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 2000, 381(8):749-753.
  • [35]Abrahams S, Tanner GJ, Larkin PJ, Ashton AR: Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol 2002, 130(2):561-576.
  • [36]Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BSJ, Muday GK: Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiology 2011, 156(1):144-164.
  • [37]Shirley B, Hanley S, Goodman H: Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 1992, 4(3):333.
  • [38]Appelhagen I, Jahns O, Bartelniewoehner L, Sagasser M, Weisshaar B, Stracke R: Leucoanthocyanidin dioxygenase in Arabidopsis thaliana: characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes. Gene 2011, 484(1–2):62-69.
  • [39]Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin PJ, Ashton AR: The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 2003, 35(5):624-636.
  • [40]Shikazono N, Yokota Y, Kitamura S, Suzuki C, Watanabe H, Tano S, Tanaka A: Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon. Genetics 2003, 163(4):1449-1455.
  • [41]Albert S, Delseny M, Devic M: BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 1997, 11(2):289-299.
  • [42]Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M: The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 1999, 19(4):387-398.
  • [43]Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S: Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 2009, 583(12):1981-1986.
  • [44]Stracke R, De Vos RCH, Bartelniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B: Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 2009, 229:427-445.
  • [45]Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BSJ: Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 2008, 147(3):1046-1061.
  • [46]Pelletier M, Burbulis I, Winkel-Shirley B: Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Mol Biol 1999, 40(1):45-54.
  • [47]Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, Koornneef M: The transparent testa12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 2001, 13(4):853-871.
  • [48]Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L: The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 2000, 12(10):1863-1878.
  • [49]Burbulis I, Winkel-Shirley B: Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci U S A 1999, 96(22):12929.
  • [50]Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, Van Reusel B, Storme V, De Rycke R, et al.: Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant J 2010, 64(6):885-897.
  • [51]Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco J, Tsukamoto T, Dunatunga D, Clara L, Smith D, Simpson R, et al.: Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant J 2011, 68(5):800-815.
  • [52]Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, et al.: Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J 2011, 67(2):354-369.
  • [53]Du YG, Chu H, Wang MF, Chu IK, Lo C: Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. Journal of Experimental Botany 2010, 61(4):983-994.
  • [54]Kim SW, Kim HJ, Kim JH, Kwon YK, Ahn MS, Jang YP, Liu JR: A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry. Plant Methods 2011, 7:14. BioMed Central Full Text
  • [55]Saslowsky D, Winkel-Shirley B: Localization of flavonoid enzymes in Arabidopsis roots. Plant J 2001, 27:37-48.
  • [56]Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 2008, 20(8):2160-2176.
  • [57]Edwards K, Johnstone C, Thompson C: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 1991, 19(6):1349.
  文献评价指标  
  下载次数:13次 浏览次数:15次