期刊论文详细信息
BMC Structural Biology
In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex
Carlos-Yesid Soto2  Leonardo Mariño-Ramírez1  David Landsman3  Luz-Mary Salazar2  Jenifer Cuesta-Bernal2  Miyer Patiño-Ruiz2  Andrés León-Torres2  Lorena Novoa-Aponte2 
[1] PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia;Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia, Carrera 30 # 45–03, Ciudad Universitaria, Bogotá, Colombia;Computational Biology Branch, NCBI, NLM, NIH, Bethesda, USA
关键词: Conserved motifs;    Ion transport;    P-type ATPases;    Mycobacterium tuberculosis complex;    Tuberculosis;   
Others  :  1118610
DOI  :  10.1186/1472-6807-12-25
 received in 2012-06-25, accepted in 2012-09-27,  发布年份 2012
PDF
【 摘 要 】

Background

P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the distribution and function of these ion transporters in mycobacteria are poorly understood.

Results

In this study, probabilistic profiles were constructed based on hidden Markov models to identify and classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC) according to the type of ion transported across the plasma membrane. Topology, hydrophobicity profiles and conserved motifs were analyzed to correlate amino acid sequences of P-type ATPases and ion transport specificity. Twelve candidate P-type ATPases annotated in the M. tuberculosis H37Rv proteome were identified in all members of the MTBC, and probabilistic profiles classified them into one of the following three groups: heavy metal cation transporters, alkaline and alkaline earth metal cation transporters, and the beta subunit of a prokaryotic potassium pump. Interestingly, counterparts of the non-catalytic beta subunits of Hydrogen/Potassium and Sodium/Potassium P-type ATPases were not found.

Conclusions

The high content of heavy metal transporters found in the MTBC suggests that they could play an important role in the ability of M. tuberculosis to survive inside macrophages, where tubercle bacilli face high levels of toxic metals. Finally, the results obtained in this work provide a starting point for experimental studies that may elucidate the ion specificity of the MTBC P-type ATPases and their role in mycobacterial infections.

【 授权许可】

   
2012 Novoa-Aponte et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150207020703204.pdf 2939KB PDF download
Figure 6. 220KB Image download
Figure 5. 157KB Image download
Figure 4. 123KB Image download
Figure 3. 347KB Image download
Figure 2. 151KB Image download
Figure 1. 189KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]WHO: Global tuberculosis control: WHO report 2011. Switzerland: Publications of the World Health Organization; 2011:246.
  • [2]McEvoy CR, et al.: The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007, 87(5):393-404.
  • [3]Issa R, et al.: Detection and discrimination of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 2012, 72(1):62-7.
  • [4]Knechel NA: Tuberculosis: pathophysiology, clinical features, and diagnosis. Crit Care Nurse 2009, 29(2):34-43. quiz 44
  • [5]Tufariello JM, Chan J, Flynn JL: Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis 2003, 3(9):578-90.
  • [6]Koul A, et al.: The challenge of new drug discovery for tuberculosis. Nature 2011, 469(7331):483-90.
  • [7]Nagata T, et al.: Comparative molecular biological analysis of membrane transport genes in organisms. Plant Mol Biol 2008, 66(6):565-85.
  • [8]Axelsen KB, Palmgren MG: Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 1998, 46(1):84-101.
  • [9]Pedersen PL: Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 2007, 39(5–6):349-55.
  • [10]Rocafull MA, et al.: Isolation and cloning of the K+−independent, ouabain-insensitive Na+−ATPase. Biochim Biophys Acta 2011, 1808(6):1684-700.
  • [11]Pinoni SAL, A A: Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: differential response to environmental salinity. J Exp Mar Bio Ecol 2009, 372(1–2):91-97.
  • [12]Jorgensen PL: Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta 1975, 401(3):399-415.
  • [13]Jorgensen PL, Hakansson KO, Karlish SJ: Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annu Rev Physiol 2003, 65:817-49.
  • [14]Xu C, et al.: A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol 2002, 316(1):201-11.
  • [15]Palmgren MG, Nissen P: P-type ATPases. Annu Rev Biophys 2011, 40:243-66.
  • [16]Kuhlbrandt W: Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 2004, 5(4):282-95.
  • [17]Bublitz M, et al.: In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 2010, 20(4):431-9.
  • [18]Uniprot. cited 2011; Available from: http://www.uniprot.org/ webcite
  • [19]Pirovano W, Feenstra KA, Heringa J: PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 2008, 24(4):492-7.
  • [20]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755-63.
  • [21]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinforma 2008, 9:40. BioMed Central Full Text
  • [22]Thever MD, Saier MH Jr: Bioinformatic characterization of P-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes. J Membr Biol 2009, 229(3):115-30.
  • [23]Chan H, et al.: The P-type ATPase superfamily. J Mol Microbiol Biotechnol 2010, 19(1–2):5-104.
  • [24]Cole ST: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393:537.
  • [25]Botella H, et al.: Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 2011, 10(3):248-59.
  • [26]Bramkamp M, Altendorf K, Greie JC: Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review). Mol Membr Biol 2007, 24(5–6):375-86.
  • [27]Lewinson O, Lee AT, Rees DC: A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci U S A 2009, 106(12):4677-82.
  • [28]Argüello JM: Identification of Ion-Selectivity Determinants in Heavy-Metal Transport P1B-type ATPases. J Membr Biol 2003, 195:93-108.
  • [29]Argüello JM, Eren E, González-Guerrero M: The structure and function of heavy metal transport P1B ATPases. Biometals 2007, 20:233-248.
  • [30]Argüello JM, Gonzalez-Guerrero M, Raimunda D: Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. Biochemistry 2011, 50(46):9940-9.
  • [31]Ward SK, et al.: CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 2010, 77(5):1096-1110.
  • [32]Lewinson O, Lee AT, Rees DC: A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci 2009, 106(12):4677-4682.
  • [33]Futai M, Wada Y, Kaplan JH: Handbook of ATPases: Biochemistry, Cell Biology, Pathophysiology. 1 ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2004.
  • [34]Schnappinger D, et al.: Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 2003, 198(5):693-704.
  • [35]Kumar M, et al.: Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog 2011, 50(1):31-8.
  • [36]Waddell SJ, et al.: The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb) 2004, 84(3–4):263-74.
  • [37]Bacon J, et al.: The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2004, 84(3–4):205-17.
  • [38]Sherman DR, et al.: Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A 2001, 98(13):7534-9.
  • [39]Kendall SL, et al.: The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 2004, 84(3–4):247-55.
  • [40]Voskuil MI, et al.: Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 2003, 198(5):705-13.
  文献评价指标  
  下载次数:53次 浏览次数:5次