期刊论文详细信息
BMC Medical Genetics
Next-generation-based targeted sequencing as an efficient tool for the study of the genetic background in Hirschsprung patients
Salud Borrego1  Guillermo Antiñolo1  Marta Martín-Sánchez1  Raquel Ma. Fernández1  Laura Espino-Paisán1  Berta Luzón-Toro1 
[1] Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
关键词: Phenotype;    NGS panel;    Hirschsprung disease;    Genetics;   
Others  :  1230729
DOI  :  10.1186/s12881-015-0235-5
 received in 2015-03-06, accepted in 2015-09-23,  发布年份 2015
【 摘 要 】

Background

The development of next-generation sequencing (NGS) technologies has a great impact in the human variation detection given their high-throughput. These techniques are particularly helpful for the evaluation of the genetic background in disorders of complex genetic etiology such as Hirschsprung disease (HSCR). The purpose of this study was the design of a panel of HSCR associated genes as a rapid and efficient tool to perform genetic screening in a series of patients.

Methods

We have performed NGS-based targeted sequencing (454-GS Junior) using a panel containing 26 associated or candidate genes for HSCR in a group of 11 selected HSCR patients.

Results

The average percentage of covered bases was of 97 %, the 91.4 % of the targeted bases were covered with depth above 20X and the mean coverage was 422X. In addition, we have found a total of 13 new coding variants and 11 new variants within regulatory regions among our patients. These outcomes allowed us to re-evaluate the genetic component associated to HSCR in these patients.

Conclusions

Our validated NGS panel constitutes an optimum method for the identification of new variants in our patients. This approach could be used for a fast, reliable and more thorough genetic screening in future series of patients.

【 授权许可】

   
2015 Luzón-Toro et al.

附件列表
Files Size Format View
Fig. 1. 71KB Image download
Fig. 1. 71KB Image download
【 图 表 】

Fig. 1.

Fig. 1.

【 参考文献 】
  • [1]Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S et al.. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008; 45:1-14.
  • [2]Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003; 40:905-16.
  • [3]Borrego S, Ruiz-Ferrer M, Fernandez RM, Antinolo G. Hirschsprung’s disease as a model of complex genetic etiology. Histol Histopathol. 2013; 28:1117-36.
  • [4]Chakravarti ALS. Hirschsprung disease. 8th ed. McGraw-Hill, New York, NY; 2001.
  • [5]Druckenbrod NR, Epstein ML. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 2009; 136:3195-203.
  • [6]Borrego S, Wright FA, Fernandez RM, Williams N, Lopez-Alonso M, Davuluri R et al.. A founding locus within the RET proto-oncogene may account for a large proportion of apparently sporadic Hirschsprung disease and a subset of cases of sporadic medullary thyroid carcinoma. Am J Hum Genet. 2003; 72:88-100.
  • [7]Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J, Burzynski G et al.. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet. 2010; 87:60-74.
  • [8]Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S et al.. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature. 2005; 434:857-63.
  • [9]Borrego S, Fernandez RM, Dziema H, Niess A, Lopez-Alonso M, Antinolo G et al.. Investigation of germline GFRA4 mutations and evaluation of the involvement of GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease. J Med Genet. 2003; 40:e18.
  • [10]Fernandez RM, Sanchez-Mejias A, Mena MD, Ruiz-Ferrer M, Lopez-Alonso M, Antinolo G et al.. A novel point variant in NTRK3, R645C, suggests a role of this gene in the pathogenesis of Hirschsprung disease. Ann Hum Genet. 2009; 73:19-25.
  • [11]Jiang Q, Turner T, Sosa MX, Rakha A, Arnold S, Chakravarti A. Rapid and efficient human mutation detection using a bench-top next-generation DNA sequencer. Hum Mutat. 2012; 33:281-9.
  • [12]Ruiz-Ferrer M, Fernandez RM, Antinolo G, Lopez-Alonso M, Borrego S. NTF-3, a gene involved in the enteric nervous system development, as a candidate gene for Hirschsprung disease. J Pediatr Surg. 2008; 43:1308-11.
  • [13]Ruiz-Ferrer M, Torroglosa A, Luzon-Toro B, Fernandez RM, Antinolo G, Mulligan LM et al.. Novel mutations at RET ligand genes preventing receptor activation are associated to Hirschsprung’s disease. J Mol Med (Berl). 2011; 89:471-80.
  • [14]Ruiz-Ferrer M, Torroglosa A, Nunez-Torres R, de Agustin JC, Antinolo G, Borrego S. Expression of PROKR1 and PROKR2 in human enteric neural precursor cells and identification of sequence variants suggest a role in HSCR. PLoS One. 2011; 6:e23475.
  • [15]Tang CS, Ngan ES, Tang WK, So MT, Cheng G, Miao XP et al.. Mutations in the NRG1 gene are associated with Hirschsprung disease. Hum Genet. 2012; 131:67-76.
  • [16]DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). http://www. genome.gov/sequencingcosts/ webcite
  • [17]Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008; 5:16-8.
  • [18]Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010; 11:31-46.
  • [19]Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008; 9:387-402.
  • [20]Gui H, Bao JY, Tang CS, So MT, Ngo DN, Tran AQ et al.. Targeted next-generation sequencing on hirschsprung disease: a pilot study exploits DNA pooling. Ann Hum Genet. 2014; 78:381-7.
  • [21]De Schrijver JM, De Leeneer K, Lefever S, Sabbe N, Pattyn F, Van Nieuwerburgh F et al.. Analysing 454 amplicon resequencing experiments using the modular and database oriented variant identification pipeline. BMC Bioinformatics. 2010; 11:269. BioMed Central Full Text
  • [22]Medina I, De Maria A, Bleda M, Salavert F, Alonso R, Gonzalez CY et al.. VARIANT: command line, web service and Web interface for fast and accurate functional characterization of variants found by next-generation sequencing. Nucleic Acids Res. 2012; 40(Web Server issue):W54-8.
  • [23]dbSNP Short Genetics Variations. http://www. ncbi.nlm.nih.gov/SNP/ webcite
  • [24]Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM et al.. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491:56-65.
  • [25]Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS et al.. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003; 21:577-81.
  • [26]Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM et al.. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014; 42(Database issue):D980-5.
  • [27]Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S et al.. Ensembl 2015. Nucleic Acids Res. 2015; 43(Database issue):D662-9.
  • [28]Exome Variant Server. Available:. http://evs. gs.washington.edu/EVS/ webcite
  • [29]Kasprzyk A. BioMart: driving a paradigm change in biological data management. Database (Oxford). 2011; 2011:bar049.
  • [30]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M et al.. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010; Chapter 19(Unit 19):10.1-21.
  • [31]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P et al.. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005; 15:1451-5.
  • [32]Goecks J, Nekrutenko A, Taylor J, Galaxy T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010; 11:R86. BioMed Central Full Text
  • [33]Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11:863-74.
  • [34]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al.. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7:248-9.
  • [35]Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489:57-74.
  • [36]Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Comput Biol. 1997; 4:311-23.
  • [37]Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006; 62:1125-32.
  • [38]Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005; 33(Web Server issue):W306-10.
  • [39]UniProt C. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014; 42(Database issue):D191-8.
  • [40]Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007; 23:1289-91.
  • [41]Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al.. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012; 40:e115.
  • [42]Lasergene8-Seqman Pro. Available:. http://www. dnastar.com/t-seqmanpro.aspx webcite
  • [43]Charoy C, Nawabi H, Reynaud F, Derrington E, Bozon M, Wright K et al.. gdnf activates midline repulsion by Semaphorin3B via NCAM during commissural axon guidance. Neuron. 2012; 75:1051-66.
  • [44]Paratcha G, Ledda F. GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci. 2008; 31:384-91.
  • [45]Jiang Q, Arnold S, Heanue T, Kilambi KP, Doan B, Kapoor A et al.. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet. 2015; 96:581-96.
  • [46]Blencowe BJ. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci. 2000; 25:106-10.
  • [47]Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002; 3:285-98.
  • [48]Piton A, Jouan L, Rochefort D, Dobrzeniecka S, Lachapelle K, Dion PA et al.. Analysis of the effects of rare variants on splicing identifies alterations in GABAA receptor genes in autism spectrum disorder individuals. Eur J Hum Genet. 2013; 21:749-56.
  • [49]Ramser J, Abidi FE, Burckle CA, Lenski C, Toriello H, Wen G et al.. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet. 2005; 14:1019-27.
  • [50]Vanhorne JB, Gimm O, Myers SM, Kaushik A, von Deimling A, Eng C et al.. Cloning and characterization of the human GFRA2 locus and investigation of the gene in Hirschsprung disease. Hum Genet. 2001; 108:409-15.
  • [51]Liang CM, Ji DM, Yuan X, Ren LL, Shen J, Zhang HY. RET and PHOX2B genetic polymorphisms and Hirschsprung’s disease susceptibility: a meta-analysis. PLoS One. 2014; 9:e90091.
  • [52]Wang Y, Wang J, Pan W, Zhou Y, Xiao Y, Zhou K et al.. Common genetic variations in Patched1 (PTCH1) gene and risk of hirschsprung disease in the Han Chinese population. PLoS One. 2013; 8:e75407.
  • [53]Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011; 38:95-109.
  • [54]Christodoulou K, Wiskin AE, Gibson J, Tapper W, Willis C, Afzal NA et al.. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut. 2013; 62:977-84.
  文献评价指标  
  下载次数:23次 浏览次数:26次