期刊论文详细信息
BMC Infectious Diseases
Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood
Terry J. Smith1  Olaf Piepenburg2  Thomas Barry3  Martin Cormican4  Teck Wee Boo4  Matthew S. Forrest2  Owen Higgins1  Eoin Clancy1 
[1] Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland;TwistDx Limited, Cambridge, United Kingdom;Nucleic Acids Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland;School of Medicine, National University of Ireland , Galway, Ireland
关键词: Molecular diagnostics;    Leader peptidase A;    Recombinase Polymerase Amplification;    Streptococcus pneumoniae;   
Others  :  1232685
DOI  :  10.1186/s12879-015-1212-5
 received in 2015-03-30, accepted in 2015-10-13,  发布年份 2015
PDF
【 摘 要 】

Background

Streptococcus pneumoniae is an important cause of microbial disease in humans. The introduction of multivalent vaccines has coincided with a dramatic decrease in the number of pneumococcal-related deaths. In spite of this, at a global level, pneumococcal infection remains an important cause of death among children under 5 years of age and in adults 65 years of age or older. In order to properly manage patients and control the spread of infection, a rapid and highly sensitive diagnostic method is needed for routine implementation, especially in resource-limited regions where pneumococcal disease is most prevalent.

Methods

Using the gene encoding leader peptidase A as a molecular diagnostics target, a real-time RPA assay was designed and optimised for the detection of S. pneumoniae in whole blood. The performance of the assay was compared to real-time PCR in terms of its analytical limit of detection and specificity. The inhibitory effect of human genomic DNA on amplification was investigated. The potential clinical utility of the assay was investigated using a small number of clinical samples.

Results

The RPA assay has a limit of detection equivalent to PCR (4.0 and 5.1 genome equivalents per reaction, respectively) and was capable of detecting the equivalent of <1 colony forming unit of S. pneumoniae when spiked into human whole blood. The RPA assay was 100 % inclusive (38/38 laboratory reference strains and 19/19 invasive clinical isolates) and 100 % exclusive; differentiating strains of S. pneumoniae species from other viridans group streptococci, including S. pseudopneumoniae. When applied to the analysis of a small number (n = 11) of clinical samples (blood culture positive for S. pneumoniae), the RPA assay was demonstrated to be both rapid and sensitive.

Conclusions

The RPA assay developed in this work is shown to be as sensitive and as specific as PCR. In terms of reaction kinetics, the RPA assay is shown to exceed those of the PCR, with the RPA running to completion in 20 minutes and capable generating a positive signal in as little as 6 minutes. This work represents a potentially suitable assay for application in point-of-care settings.

【 授权许可】

   
2015 Clancy et al.

【 预 览 】
附件列表
Files Size Format View
20151116021837634.pdf 1189KB PDF download
Fig. 5. 34KB Image download
Fig. 4. 27KB Image download
Fig. 3. 56KB Image download
Fig. 2. 32KB Image download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N et al.. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009; 374(9693):893-902.
  • [2]Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Micro. 2008; 6(4):288-301.
  • [3]Erdem H, Elaldi N, Öztoprak N, Sengoz G, Ak O, Kaya S et al.. Mortality indicators in pneumococcal meningitis: therapeutic implications. Int J Infect Dis. 2014; 19:13-19.
  • [4]Jit M. The risk of sequelae due to pneumococcal meningitis in high-income countries: A systematic review and meta-analysis. J Infect. 2010; 61(2):114-124.
  • [5]Maimaiti N, Ahmed Z, Md Isa Z, Ghazi HF, Aljunid S. Clinical Burden of Invasive Pneumococcal Disease in Selected Developing Countries. Value in Health Regional Issues. 2013; 2(2):259-263.
  • [6]Whatmore AM, Efstratiou A, Pickerill AP, Broughton K, Woodard G, Sturgeon D et al.. Genetic Relationships between Clinical Isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: Characterization of “Atypical” Pneumococci and Organisms Allied to S. mitis Harboring S. pneumoniae Virulence Factor-Encoding Genes. Infect Immun. 2000; 68(3):1374-1382.
  • [7]Suzuki N, Seki M, Nakano Y, Kiyoura Y, Maeno M, Yamashita Y. Discrimination of Streptococcus pneumoniae from Viridans Group Streptococci by Genomic Subtractive Hybridization. J Clin Micro. 2005; 43(9):4528-4534.
  • [8]Simmon KE, Hall L, Woods CW, Marco F, Miro JM, Cabell C et al.. Phylogenetic Analysis of Viridans Group Streptococci Causing Endocarditis. J Clin Micro. 2008; 46(9):3087-3090.
  • [9]Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho MGS, Steigerwalt AG et al.. Accuracy of Phenotypic and Genotypic Testing for Identification of Streptococcus pneumoniae and Description of Streptococcus pseudopneumoniae sp. nov. J Clin Micro. 2004; 42(10):4686-4696.
  • [10]Smith MD, Derrington P, Evans R, Creek M, Morris R, Dance DAB et al.. Rapid Diagnosis of Bacteremic Pneumococcal Infections in Adults by Using the Binax NOW Streptococcus pneumoniae Urinary Antigen Test: a Prospective, Controlled Clinical Evaluation. J Clin Micro. 2003; 41(7):2810-2813.
  • [11]Michelow IC, Lozano J, Olsen K, Goto C, Rollins NK, Ghaffar F et al.. Diagnosis of Streptococcus pneumoniae Lower Respiratory Infection in Hospitalized Children by Culture, Polymerase Chain Reaction, Serological Testing, and Urinary Antigen Detection. Clin Infect Dis. 2002; 34(1):e1-e11.
  • [12]Seki M, Yamashita Y, Torigoe H, Tsuda H, Sato S, Maeno M. Loop-Mediated Isothermal Amplification Method Targeting the lytA Gene for Detection of Streptococcus pneumoniae. J Clin Micro. 2005; 43(4):1581-1586.
  • [13]Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. Simultaneous Detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in Suspected Cases of Meningitis and Septicemia Using Real-Time PCR. J Clin Micro. 2001; 39(4):1553-1558.
  • [14]Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA Detection Using Recombination Proteins. PLoS Biol. 2006; 4(7):e204.
  • [15]Murinda SE, Ibekwe AM, Zulkaffly S, Cruz A, Park S, Razak N et al.. Real-Time Isothermal Detection of Shiga Toxin-Producing Escherichia coli Using Recombinase Polymerase Amplification. Foodborne Path Dis. 2014; 11(7):529-536.
  • [16]Ahmed A, van der Linden H, Hartskeerl RA. Development of a Recombinase Polymerase Amplification Assay for the Detection of Pathogenic Leptospira. Int J Environ Res Public Health. 2014; 11(5):4953-4964.
  • [17]Krolov K, Frolova J, Tudoran O, Suhorutsenko J, Lehto T, Sibul H et al.. Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine Samples. J Mol Diag. 2014; 16(1):127-135.
  • [18]Loo JFC, Lau PM, Ho HP, Kong SK. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening. Talanta. 2013; 115:159-165.
  • [19]Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S et al.. Development of a Panel of Recombinase Polymerase Amplification Assays for Detection of Biothreat Agents. J Clin Micro. 2013; 51(4):1110-1117.
  • [20]Daher RK, Stewart G, Boissinot M, Bergeron MG. Isothermal Recombinase Polymerase Amplification Assay Applied to the Detection of Group B Streptococci in Vaginal/Anal Samples. Clin Chem. 2014; 60(4):660-666.
  • [21]Amer HM, Abd El Wahed A, Shalaby MA, Almajhdi FN, Hufert FT, Weidmann M. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J Virol Meth. 2013; 193(2):337-340.
  • [22]Abd El Wahed A, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, Hassan S et al. A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus. Plos One. 2013;8(8). doi:10.1371/journal.pone.0071642.
  • [23]Abdeldaim GMK, Strålin K, Olcén P, Blomberg J, Herrmann B. Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment. Diag Micro Infect Dis. 2008; 60(2):143-150.
  • [24]Zbinden A, Köhler N, Bloemberg GV. recA-Based PCR Assay for Accurate Differentiation of Streptococcus pneumoniae from Other Viridans Streptococci. J Clin Micro. 2011; 49(2):523-527.
  • [25]El Aila N, Emler S, Kaijalainen T, De Baere T, Saerens B, Alkan E et al.. The development of a 16S rRNA gene based PCR for the identification of Streptococcus pneumoniae and comparison with four other species specific PCR assays. BMC Infect Dis. 2010; 10(1):104. BioMed Central Full Text
  • [26]Sheppard CL, Harrison TG, Morris R, Hogan A, George RC. Autolysin-targeted LightCycler assay including internal process control for detection of Streptococcus pneumoniae DNA in clinical samples. J Med Micro. 2004; 53(3):189-195.
  • [27]Lorente MLL, Falguera M, Nogués A, González AR, Merino MT, Caballero MR. Diagnosis of pneumococcal pneumonia by polymerase chain reaction (PCR) in whole blood: a prospective clinical study. Thorax. 2000; 55(2):133-137.
  • [28]Yang S, Lin S, Khalil A, Gaydos C, Nuemberger E, Juan G et al.. Quantitative PCR Assay Using Sputum Samples for Rapid Diagnosis of Pneumococcal Pneumonia in Adult Emergency Department Patients. J Clin Micro. 2005; 43(7):3221-3226.
  • [29]Carvalho MGS, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW et al.. Evaluation and Improvement of Real-Time PCR Assays Targeting lytA, ply, and psaA Genes for Detection of Pneumococcal DNA. J Clin Micro. 2007; 45(8):2460-2466.
  • [30]Greve T, Møller JK. Accuracy of using the lytA gene to distinguish Streptococcus pneumoniae from related species. J Med Microbiol. 2012; 61(Pt 4):478-482.
  • [31]Zhang D, Qin Y. The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem J. 2013; 452:173-181.
  • [32]Pech M, Karim Z, Yamamoto H, Kitakawa M, Qin Y, Nierhaus KH. Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci U S A. 2011; 108(8):3199-3203.
  • [33]Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN et al.. The Highly Conserved LepA Is a Ribosomal Elongation Factor that Back-Translocates the Ribosome. Cell. 2006; 127(4):721-733.
  • [34]Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CMT et al.. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Micro. 2013; 12(2):89-100.
  • [35]Reddington K, O’Grady J, Dorai-Raj S, Maher M, van Soolingen D, Barry T. Novel Multiplex Real-Time PCR Diagnostic Assay for Identification and Differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis Complex Strains. J Clin Micro. 2011; 49(2):651-657.
  • [36]Reddington K, O’Grady J, Dorai-Raj S, Niemann S, van Soolingen D, Barry T. A Novel Multiplex Real-Time PCR for the Identification of Mycobacteria Associated with Zoonotic Tuberculosis. PLoS One. 2011; 6(8):e23481.
  • [37]Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher N, Angiuoli S et al.. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010; 11(10):R107. BioMed Central Full Text
  • [38]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al.. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947-2948.
  • [39]Calix JJ, Nahm MH. A New Pneumococcal Serotype, 11E, Has a Variably Inactivated wcjE Gene. J Infect Dis. 2010; 202(1):29-38.
  • [40]Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM et al.. Sustained Reductions in Invasive Pneumococcal Disease in the Era of Conjugate Vaccine. J Infect Dis. 2010; 201(1):32-41.
  • [41]Lexau CA, Lynfield R, Danila R, Pilishvili T, Facklam R, Farley MM et al.. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA. 2005; 294(16):2043-2051.
  • [42]Compton J. Nucleic acid sequence-based amplification. Nature. 1991; 350(6313):91-92.
  • [43]Brentano S, McDonough S. Isothermal Amplification of RNA by Transcription-Mediated Amplification (TMA). In: Kessler C, editor. Nonradioactive Analysis of Biomolecules. Springer Lab Manuals: Springer Berlin Heidelberg; 2000. p. 374–80.
  • [44]Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N et al.. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28(12):e63.
  • [45]Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004; 5(8):795-800.
  • [46]Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998; 19(3):225-232.
  • [47]Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992; 20(7):1691-1696.
  • [48]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al.. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem. 2009; 55(4):611-622.
  • [49]Peters RPH, de Boer RF, Schuurman T, Gierveld S, Kooistra-Smid M, van Agtmael MA et al.. Streptococcus pneumoniae DNA Load in Blood as a Marker of Infection in Patients with Community-Acquired Pneumonia. J Clin Micro. 2009; 47(10):3308-3312.
  • [50]Wang H, Cheng H, Wei D, Wang F. Comparison of methods for measuring viable E. coli cells during cultivation: Great differences in the early and late exponential growth phases. J Microbiol Meth. 2011; 84(1):140-143.
  文献评价指标  
  下载次数:51次 浏览次数:4次