期刊论文详细信息
BMC Genetics
Developing molecular tools and insights into the Penstemon genome using genomic reduction and next-generation sequencing
Mikel R Stevens2  Keri Dockter2  JanaLynn Franke2  Danika Tumbleson2  Leigh A Johnson1  P Jeff Maughan2  Brad Geary2  David B Elzinga2  Rhyan B Dockter2 
[1] Biology Department, Brigham Young University, Provo, UT 84602, USA;Plant and Wildlife Sciences Department, Brigham Young University, Provo, UT 84602, USA
关键词: Repetitive elements;    Pyrosequencing;    Plantaginaceae;    LTR retroelements;    Homologous sequences;    Genome reduction;    Breeding domesticated Penstemon;   
Others  :  1086842
DOI  :  10.1186/1471-2156-14-66
 received in 2012-09-15, accepted in 2013-08-01,  发布年份 2013
PDF
【 摘 要 】

Background

Penstemon’s unique phenotypic diversity, hardiness, and drought-tolerance give it great potential for the xeric landscaping industry. Molecular markers will accelerate the breeding and domestication of drought tolerant Penstemon cultivars by, creating genetic maps, and clarifying of phylogenetic relationships. Our objectives were to identify and validate interspecific molecular markers from four diverse Penstemon species in order to gain specific insights into the Penstemon genome.

Results

We used a 454 pyrosequencing and GR-RSC (genome reduction using restriction site conservation) to identify homologous loci across four Penstemon species (P. cyananthus, P. davidsonii, P. dissectus, and P. fruticosus) representing three diverse subgenera with considerable genome size variation. From these genomic data, we identified 133 unique interspecific markers containing SSRs and INDELs of which 51 produced viable PCR-based markers. These markers produced simple banding patterns in 90% of the species × marker interactions (~84% were polymorphic). Twelve of the markers were tested across 93, mostly xeric, Penstemon taxa (72 species), of which ~98% produced reproducible marker data. Additionally, we identified an average of one SNP per 2,890 bp per species and one per 97 bp between any two apparent homologous sequences from the four source species. We selected 192 homologous sequences, meeting stringent parameters, to create SNP markers. Of these, 75 demonstrated repeatable polymorphic marker functionality across the four sequence source species. Finally, sequence analysis indicated that repetitive elements were approximately 70% more prevalent in the P. cyananthus genome, the largest genome in the study, than in the smallest genome surveyed (P. dissectus).

Conclusions

We demonstrated the utility of GR-RSC to identify homologous loci across related Penstemon taxa. Though PCR primer regions were conserved across a broadly sampled survey of Penstemon species (93 taxa), DNA sequence within these amplicons (12 SSR/INDEL markers) was highly diverse. With the continued decline in next-generation sequencing costs, it will soon be feasible to use genomic reduction techniques to simultaneously sequence thousands of homologous loci across dozens of Penstemon species. Such efforts will greatly facilitate our understanding of the phylogenetic structure within this important drought tolerant genus. In the interim, this study identified thousands of SNPs and over 50 SSRs/INDELs which should provide a foundation for future Penstemon phylogenetic studies and breeding efforts.

【 授权许可】

   
2013 Dockter et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116020014142.pdf 1729KB PDF download
Figure 3. 120KB Image download
Figure 3. 28KB Image download
Figure 2. 70KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 3.

【 参考文献 】
  • [1]St Hilaire R, Arnold MA, Wilkerson DC, Devitt DA, Hurd BH, Lesikar BJ, Lohr VI, Martin CA, McDonald GV, Morris RL, Pittenger DR, Shaw DA, Zoldoske DF: Efficient water use in residential urban landscapes. HortScience 2008, 43:2081-2092.
  • [2]Martin CA: Landscape water use in Phoenix, Arizona. Desert Plants 2001, 17:26-31.
  • [3]Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJB, D’Antonio CM, Diez JM, Dukes JS, Ibanez I, Olden JD: Global change, global trade, and the next wave of plant invasions. Front Ecol Environ 2012, 10:20-28.
  • [4]Burt JW, Muir AA, Piovia-Scott J, Veblen KE, Chang AL, Grossman JD, Weiskel HW: Preventing horticultural introductions of invasive plants: potential efficacy of voluntary initiatives. Biol Invasions 2007, 9:909-923.
  • [5]Broderick SR, Stevens MR, Geary B, Love SL, Jellen EN, Dockter RB, Daley SL, Lindgren DT: A survey of Penstemon’s genome size. Genome 2011, 54:160-173.
  • [6]Lindgren D, Wilde E: Growing Penstemons: Species, Cultivars and Hybrids. Haverford, PA: Infinity Publishing Com; 2003.
  • [7]Lindgren DT: Breeding Penstemon. In Breeding Ornamental Plants. Edited by Callaway DJ, Callaway MB. Portland, Oregon: Timber Press; 2000:196-212.
  • [8]Nold R: Penstemons. Portland, Oregon: Timber Press; 1999.
  • [9]Viehmeyer G: Let’s breed better Penstemon. Bul Amer Penstemon Soc 1955, 14:275-288.
  • [10]Way D, James P: The Gardener’s Guide to Growing Penstemon. Portland, OR: Timber Press; 1998.
  • [11]Lindgren DT, Schaaf DM: Penstemon: a summary of interspecific crosses. HortScience 2007, 42:494-498.
  • [12]Lindgren D: List and Description of Named Cultivars in the Genus Penstemon (2006). Lincoln, Nebraska: University of Nebraska-Lincoln Extension; EC1255; 2006.
  • [13]Straw RM: A redefinition of Penstemon (Scrophulariaceae). Brittonia 1966, 18:80-95.
  • [14]Wolfe AD, Randle CP, Datwyler SL, Morawetz JJ, Arguedas N, Diaz J: Phylogeny, taxonomic affinities, and biogeography of Penstemon (Plantaginaceae) based on ITS and cpDNA sequence data. Amer J Bot 2006, 93:1699-1713.
  • [15]Uhlinger RD, Viehmeyer G: Penstemon in your Garden. Lincoln, Nebraska: University of Nebraska College of Agriculture The Agricultural Experiment Station; 1971. Station Circular 105
  • [16]Viehmeyer G: Reversal of evolution in the genus Penstemon. Am Nat 1958, 92:129-137.
  • [17]Viehmeyer G: Advances in Penstemon breeding. Bul Amer Penstemon Soc 1973, 32:16-21.
  • [18]Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J: Targeted enrichment strategies for next-generation plant biology. Amer J Bot 2012, 99:291-311.
  • [19]Heslop-Harrison JS: Exploiting novel germplasm. Aust J Agric Res 2002, 53:873-879.
  • [20]Maughan PJ, Smith SM, Fairbanks DJ, Jellen EN: Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Gen 2011, 4:1-10.
  • [21]Bernardo R: Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 2008, 48:1649-1664.
  • [22]Tanksley SD, McCouch SR: Seed banks and molecular maps: unlocking genetic potential from the wild. Science 1997, 277:1063-1066.
  • [23]Dockter RB: Genome snapshot and molecular marker development in Penstemon (Plantaginaceae). M.S. Thesis. Brigham Young University, Department of Plant and Wildlife Sciences; 2011.
  • [24]Santana QC, Coetzee MPA, Steenkamp ET, Mlonyeni OX, Hammond GNA, Wingfield MJ, Wingfield BD: Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 2009, 46:217-223.
  • [25]Maughan PJ, Yourstone SM, Jellen EN, Udall JA: SNP discovery via genomic reduction, barcoding and 454-pyrosequencing in amaranth. Plant Gen 2009, 2:260-270.
  • [26]Păcurar DI, Păcurar ML, Street N, Bussell JD, Pop TI, Gutierrez L, Bellini C: A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J Exp Bot 2012, 63:2491-2501.
  • [27]Althoff DM, Gitzendanner MA, Segraves KA: The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 2007, 56:477-484.
  • [28]Sambrook J, Fritcsh EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, N.Y: Cold Spring Harbor Lab; 1989.
  • [29]Todd JJ, Vodkin LO: Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 1996, 8:687-699.
  • [30]Holmgren NH: Penstemon. In Intermountain Flora: Vascular Plants of the Intermountain West. Volume 4. Edited by Cronquist A, Holmgren AH, Holmgren NH, Reveal JL, Holmgren PK. Bronx, New York, USA: New York Botanical Garden; 1984:370-457.
  • [31]Welsh SL, Atwood ND, Goodrich S, Higgins LC: A Utah Flora. 4th edition. Provo, Utah: Brigham Young University; 2008.
  • [32]RepeatMasker [http://www.repeatmasker.org webcite]
  • [33]Bao Z, Eddy SR: Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 2002, 12:1269-1276.
  • [34]Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics 2005, 21(Suppl 1):I351-I358.
  • [35]Maughan PJ, Yourstone SM, Byers RL, Smith SM, Udall JA: Single-nucleotide polymorphism genotyping in mapping populations via genomic reduction and next-generation sequencing: proof-of-concept. Plant Gen 2010, 3:1-13.
  • [36]Rhee SY, Beavis W, Berardini TZ, Chen GH, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu YH, Xu I, Yoo D, Yoon J, Zhang PF: The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 2003, 31:224-228.
  • [37]Thiel T, Michalek W, Varshney RK, Graner A: Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 2003, 106:411-422.
  • [38]Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JGR, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E: The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002, 12:1611-1618.
  • [39]Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by Krawetz S, Misener S. Totowa, NJ: Humana Press; 2000:365-386.
  • [40]PAUP* Phylogenetic analysis using parsimony (*and other methods) [http://paup.csit.fsu.edu/ webcite]
  • [41]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [42]GenBank [http://www.ncbi.nlm.nih.gov/genbank/ webcite]
  • [43]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [44]Kawabe A, Miyashita NT: Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 2003, 78:343-352.
  • [45]Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 2002, 30:194-200.
  • [46]Robinson JP, Harris SA: Amplified fragment length polymorphisms and microsatellites: a phylogenetic perspective. In EU-Compendium: Which DNA Marker for Which Purpose?. Edited by Gillet EM. Göttingen, Germany: Institut für Forstgenetik und Forstpflanzenzüchtung, Universität Göttingen; 1999:95-121.
  • [47]Ochieng JW, Steane DA, Ladiges PY, Baverstock PR, Henry RJ, Shepherd M: Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genet Mol Biol 2007, 30:1125-1134.
  • [48]Nadir E, Margalit H, Gallily T, Ben-Sasson SA: Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc Natl Acad Sci USA 1996, 93:6470-6475.
  • [49]Viehmeyer G: Reports dealing in large part with hybridization and selection. Bul Amer Penstemon Soc 1965, 24:95-100.
  • [50]Zamir D, Tadmor Y: Unequal segregation of nuclear genes in plants. Bot Gaz 1986, 147:355-358.
  • [51]Eshed Y, Zamir D: A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica 1994, 79:175-179.
  • [52]Robbins MD, Masud MAT, Panthee DR, Gardner RG, Francis DM, Stevens MR: Marker assisted selection for coupling phase resistance to Tomato spotted wilt virus and Phytophthora infestans (late blight) in tomato. HortScience 2010, 45:1424-1428.
  • [53]Canady MA, Meglic V, Chetelat RT: A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 2005, 48:685-697.
  • [54]Canady MA, Ji YF, Chetelat RT: Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 2006, 174:1775-1788.
  • [55]Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S: Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001, 11:1441-1452.
  • [56]Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T: Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 2009, 118:327-338.
  • [57]Zhang FK, Zhao ZM: The influence of neighboring-nucleotide composition on single nucleotide polymorphisms (SNPs) in the mouse genome and its comparison with human SNPs. Genomics 2004, 84:785-795.
  • [58]Morton BR, Bi IV, McMullen MD, Gaut BS: Variation in mutation dynamics across the maize genome as a function of regional and flanking base composition. Genetics 2006, 172:569-577.
  • [59]Schmuths H, Meister A, Horres R, Bachmann K: Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 2004, 93:317-321.
  • [60]Lynch M: The Origins of Genome Architecture. Sunderland, MA: Sinauer Associates, Inc; 2007.
  • [61]Lynch M, Conery JS: The origins of genome complexity. Science 2003, 302:1401-1404.
  • [62]Kidwell MG: Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002, 115:49-63.
  • [63]Raskina O, Barber JC, Nevo E, Belyayev A: Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 2008, 120:351-357.
  • [64]Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, Maughan PJ, Coleman CE, Stevens MR, Jellen EN, Maluszynska J: Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome 2011, 54:710-717.
  • [65]Kubis S, Schmidt T, Heslop-Harrison JS: Repetitive DNA elements as a major component of plant genomes. Ann Bot 1998, 82(Suppl A):45-55.
  • [66]Meyers B: A summary of Bruce Meyers’ Penstemon hybridizations. Bul Amer Penstemon Soc 1998, 57:2-11.
  • [67]Friedt W, Snowdon RJ, Ordon F, Ahlemeyer J: Plant breeding: assessment of genetic diversity in crop plants and its exploitation in breeding. Prog Bot 2007, 68:151-178.
  • [68]Wolfe AD, Elisens WJ: Diploid hybrid speciation in Penstemon (Scrophulariaceae) revisited. Amer J Bot 1993, 80:1082-1094.
  • [69]Wolfe AD, Elisens WJ: Nuclear ribosomal DNA restriction site variation in Penstemon section Peltanthera (Scrophulariaceae): an evaluation of diploid hybrid speciation and evidence for introgression. Amer J Bot 1994, 81:1627-1635.
  • [70]Wolfe AD, Elisens WJ: Evidence of chloroplast capture and pollen-mediated gene flow in Penstemon sect. Peltanthera (Scrophulariaceae). Syst Bot 1995, 20:395-412.
  • [71]Datwyler SL, Wolfe AD: Phylogenetic relationships and morphological evolution in Penstemon subg. Dasanthera (Veronicaceae). Syst Bot 2004, 29:165-176.
  • [72]Wolfe AD, Xiang Q-Y, Kephart SR: Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 1998, 7:1107-1125.
  • [73]Wolfe AD, Xiang Q-Y, Kephart SR: Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc Natl Acad Sci USA 1998, 95:5112-5115.
  • [74]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011, 6:e19379.
  文献评价指标  
  下载次数:21次 浏览次数:15次