期刊论文详细信息
BMC Genomics
LTR retroelements are intrinsic components of transcriptional networks in frogs
Jörg Plötner2  Martin Meixner3  Albert J Poustka1  José Horacio Grau2 
[1] Max-Planck-Institut für Molekulare Genetik, AG Evolution and Development, Ihnestraße 73-75, 14195 Berlin, Germany;Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany;Services in Molecular Biology GmbH, Rudolf-Breitscheid-Str. 70, 15562 Rüdersdorf, Germany
关键词: Embryogenesis;    Transcriptome;    RNAseq;    Anura;    Pelophylax;    Silurana;    LTR retroelements;   
Others  :  1216401
DOI  :  10.1186/1471-2164-15-626
 received in 2014-03-18, accepted in 2014-07-15,  发布年份 2014
PDF
【 摘 要 】

Background

LTR retroelements (LTR REs) constitute a major group of transposable elements widely distributed in eukaryotic genomes. Through their own mechanism of retrotranscription LTR REs enrich the genomic landscape by providing genetic variability, thus contributing to genome structure and organization. Nonetheless, transcriptomic activity of LTR REs still remains an obscure domain within cell, developmental, and organism biology.

Results

Here we present a first comparative analysis of LTR REs for anuran amphibians based on a full depth coverage transcriptome of the European pool frog, Pelophylax lessonae, the genome of the African clawed frog, Silurana tropicalis (release v7.1), and additional transcriptomes of S. tropicalis and Cyclorana alboguttata. We identified over 1000 copies of LTR REs from all four families (Bel/Pao, Ty1/Copia, Ty3/Gypsy, Retroviridae) in the genome of S. tropicalis and discovered transcripts of several of these elements in all RNA-seq datasets analyzed. Elements of the Ty3/Gypsy family were most active, especially Amn-san elements, which accounted for approximately 0.27% of the genome in Silurana. Some elements exhibited tissue specific expression patterns, for example Hydra1.1 and MuERV-like elements in Pelophylax. In S. tropicalis considerable transcription of LTR REs was observed during embryogenesis as soon as the embryonic genome became activated, i.e. at midblastula transition. In the course of embryonic development the spectrum of transcribed LTR REs changed; during gastrulation and neurulation MuERV-like and SnRV like retroviruses were abundantly transcribed while during organogenesis transcripts of the XEN1 retroviruses became much more active.

Conclusions

The differential expression of LTR REs during embryogenesis in concert with their tissue-specificity and the protein domains they encode are evidence for the functional roles these elements play as integrative parts of complex regulatory networks. Our results support the meanwhile widely accepted concept that retroelements are not simple “junk DNA” or “harmful genomic parasites” but essential components of the transcriptomic machinery in vertebrates.

【 授权许可】

   
2014 Grau et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630103516702.pdf 3593KB PDF download
Figure 4. 89KB Image download
Figure 3. 152KB Image download
Figure 2. 135KB Image download
Figure 1. 223KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kazazian HH: Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
  • [2]Feschotte C: Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008, 9:397-405.
  • [3]Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, et al.: Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007, 316:222-234.
  • [4]Petrov DA: Evolution of genome size: new approaches to an old problem. Trends Genet TIG 2001, 17:23-28.
  • [5]Kidwell MG: Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002, 115:49-63.
  • [6]Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff J-N: Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol 2008, 16:203-215.
  • [7]Biémont C: A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 2010, 186:1085-1093.
  • [8]Bire S, Rouleux-Bonnin F: Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol Clifton NJ 2012, 859:1-28.
  • [9]Medstrand P, van de Lagemaat LN, Dunn CA, Landry J-R, Svenback D, Mager DL: Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 2005, 110:342-352.
  • [10]Sela N, Kim E, Ast G: The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 2010, 11:R59.
  • [11]Van de Lagemaat LN, Landry J-R, Mager DL, Medstrand P: Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet TIG 2003, 19:530-536.
  • [12]Mariño-Ramírez L, Lewis KC, Landsman D, Jordan IK: Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 2005, 110:333-341.
  • [13]Cohen CJ, Lock WM, Mager DL: Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 2009, 448:105-114.
  • [14]Conley AB, Piriyapongsa J, Jordan IK: Retroviral promoters in the human genome. Bioinforma Oxf Engl 2008, 24:1563-1567.
  • [15]Jern P, Coffin JM: Effects of retroviruses on host genome function. Annu Rev Genet 2008, 42:709-732.
  • [16]Roy-Engel AM, El-Sawy M, Farooq L, Odom GL, Perepelitsa-Belancio V, Bruch H, Oyeniran OO, Deininger PL: Human retroelements may introduce intragenic polyadenylation signals. Cytogenet Genome Res 2005, 110:365-371.
  • [17]Lee JY, Ji Z, Tian B: Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3’-end of genes. Nucleic Acids Res 2008, 36:5581-5590.
  • [18]Conley AB, Jordan IK: Cell type-specific termination of transcription by transposable element sequences. Mob DNA 2012, 3:15.
  • [19]Smalheiser NR, Torvik VI: Mammalian microRNAs derived from genomic repeats. Trends Genet TIG 2005, 21:322-326.
  • [20]Rebollo R, Romanish MT, Mager DL: Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012, 46:21-42.
  • [21]Volff J-N, Bouneau L, Ozouf-Costaz C, Fischer C: Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 2003, 19:674-678.
  • [22]Vastenhouw NL, Plasterk RHA: RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet TIG 2004, 20:314-319.
  • [23]Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM: The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc B Biol Sci 2009, 364:99-115.
  • [24]Malone CD, Hannon GJ: Small RNAs as guardians of the genome. Cell 2009, 136:656-668.
  • [25]Ishizu H, Siomi H, Siomi MC: Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2012, 26:2361-2373.
  • [26]Yoder JA, Walsh CP, Bestor TH: Cytosine methylation and the ecology of intragenomic parasites. Trends Genet TIG 1997, 13:335-340.
  • [27]Feng G, Leem Y-E, Levin HL: Transposon integration enhances expression of stress response genes. Nucleic Acids Res 2013, 41:775-789.
  • [28]Deininger PL, Batzer MA: Mammalian retroelements. Genome Res 2002, 12:1455-1465.
  • [29]Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH: A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007, 8:973-982.
  • [30]Kapitonov VV, Jurka J: A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 2008, 9:411-412. author reply 414
  • [31]Eickbush TH, Jamburuthugoda VK: The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 2008, 134:221-234.
  • [32]Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A: Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 2009, 4:41.
  • [33]Magiorkinis G, Gifford RJ, Katzourakis A, De Ranter J, Belshaw R: Env-less endogenous retroviruses are genomic superspreaders. Proc Natl Acad Sci U S A 2012, 109:7385-7390.
  • [34]Havecker ER, Gao X, Voytas DF: The diversity of LTR retrotransposons. Genome Biol 2004, 5:225.
  • [35]De la Chaux N, Wagner A: BEL/Pao retrotransposons in metazoan genomes. BMC Evol Biol 2011, 11:154.
  • [36]Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A: The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 2011, 39(Database issue):D70-74.
  • [37]Lerat E: Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 2010, 104:520-533.
  • [38]Rho M, Schaack S, Gao X, Kim S, Lynch M, Tang H: LTR retroelements in the genome of Daphnia pulex. BMC Genomics 2010, 11:425.
  • [39]Animal Genome Size Database Home [http://www.genomesize.com/index.php webcite]
  • [40]Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, et al.: The genome of the Western clawed frog Xenopus tropicalis. Science 2010, 328:633-636.
  • [41]Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH, Li JB: RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 2013, 23:201-216.
  • [42]Copeland CS, Mann VH, Morales ME, Kalinna BH, Brindley PJ: The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol Biol 2005, 5:20.
  • [43]Rohr CJB, Ranson H, Wang X, Besansky NJ: Structure and evolution of mtanga, a retrotransposon actively expressed on the Y chromosome of the African malaria vector Anopheles gambiae. Mol Biol Evol 2002, 19:149-162.
  • [44]Terrat Y, Bonnivard E, Higuet D: GalEa retrotransposons from galatheid squat lobsters (Decapoda, Anomura) define a new clade of Ty1/copia-like elements restricted to aquatic species. Mol Genet Genomics MGG 2008, 279:63-73.
  • [45]Bowen NJ, McDonald JF: Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res 1999, 9:924-935.
  • [46]Bae YA, Moon SY, Kong Y, Cho SY, Rhyu MG: CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol 2001, 18:1474-1483.
  • [47]Butler M, Goodwin T, Poulter R: An unusual vertebrate LTR retrotransposon from the cod Gadus morhua. Mol Biol Evol 2001, 18:443-447.
  • [48]Goodwin TJD, Poulter RTM: A group of deuterostome Ty3/gypsy-like retrotransposons with Ty1/copia-like pol-domain orders. Mol Genet Genomics MGG 2002, 267:481-491.
  • [49]Michaille JJ, Mathavan S, Gaillard J, Garel A: The complete sequence of mag, a new retrotransposon in Bombyx mori. Nucleic Acids Res 1990, 18:674.
  • [50]Tubío JMC, Naveira H, Costas J: Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. Mol Biol Evol 2005, 22:29-39.
  • [51]Bénit L, De Parseval N, Casella JF, Callebaut I, Cordonnier A, Heidmann T: Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J Virol 1997, 71:5652-5657.
  • [52]Bénit L, Lallemand JB, Casella JF, Philippe H, Heidmann T: ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J Virol 1999, 73:3301-3308.
  • [53]Hart D, Frerichs GN, Rambaut A, Onions DE: Complete nucleotide sequence and transcriptional analysis of snakehead fish retrovirus. J Virol 1996, 70:3606-3616.
  • [54]Kambol R, Kabat P, Tristem M: Complete nucleotide sequence of an endogenous retrovirus from the amphibian, Xenopus laevis. Virology 2003, 311:1-6.
  • [55]Newport J, Kirschner M: A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 1982, 30:675-686.
  • [56]Brehm A, Tufteland KR, Aasland R, Becker PB: The many colours of chromodomains. BioEssays News Rev Mol Cell Dev Biol 2004, 26:133-140.
  • [57]Kordis D: A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene 2005, 347:161-173.
  • [58]Cavalli G, Paro R: Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Curr Opin Cell Biol 1998, 10:354-360.
  • [59]Schüller M, Jenne D, Voltz R: The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease. J Neuroimmunol 2005, 169:172-176.
  • [60]Iwasaki S, Suzuki S, Pelekanos M, Clark H, Ono R, Shaw G, Renfree MB, Kaneko-Ishino T, Ishino F: Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians. DNA Res Int J Rapid Publ Rep Genes Genomes 2013, 20:425-436.
  • [61]Sander TL, Stringer KF, Maki JL, Szauter P, Stone JR, Collins T: The SCAN domain defines a large family of zinc finger transcription factors. Gene 2003, 310:29-38.
  • [62]Dlakić M: Functionally unrelated signalling proteins contain a fold similar to Mg2 + -dependent endonucleases. Trends Biochem Sci 2000, 25:272-273.
  • [63]Sitbon E, Pietrokovski S: New types of conserved sequence domains in DNA-binding regions of homing endonucleases. Trends Biochem Sci 2003, 28:473-477.
  • [64]Brown RS: Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 2005, 15:94-98.
  • [65]Laity JH, Lee BM, Wright PE: Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001, 11:39-46.
  • [66]Banumathy G, Somaiah N, Zhang R, Tang Y, Hoffmann J, Andrake M, Ceulemans H, Schultz D, Marmorstein R, Adams PD: Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells. Mol Cell Biol 2009, 29:758-770.
  • [67]RepeatMasker Open-3.0 - frog [ xenTro ] Genomic Dataset [http://www.repeatmasker.org/species/xenTro.html webcite]
  • [68]Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL: LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 2012, 4:168-183.
  • [69]Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, Guillaume K, Moriau L, Bossuyt F: Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci U S A 2007, 104:887-892.
  • [70]Jordan IK, Matyunina LV, McDonald JF: Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci U S A 1999, 96:12621-12625.
  • [71]Gonzalez P, Lessios HA: Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 echinoid species. Mol Biol Evol 1999, 16:938-952.
  • [72]Terzian C, Ferraz C, Demaille J, Bucheton A: Evolution of the Gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol Biol Evol 2000, 17:908-914.
  • [73]Vázquez-Manrique RP, Hernández M, Martínez-Sebastián MJ, de Frutos R: Evolution of gypsy endogenous retrovirus in the Drosophila obscura species group. Mol Biol Evol 2000, 17:1185-1193.
  • [74]Schaack S, Gilbert C, Feschotte C: Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010, 25:537-546.
  • [75]Silva JC, Loreto EL, Clark JB: Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 2004, 6:57-71.
  • [76]Düşen S, Öz M: Helminths of the marsh frog, Rana ridibunda Pallas, 1771 (Anura: Ranidae), from Antalya Province, Southwestern Turkey. Comp Parasitol 2006, 73:121-129.
  • [77]Düşen S, Öz M: Helminth fauna of the Eurasian marsh frog, Pelophylax ridibundus (Pallas, 1771) (Anura: Ranidae), collected from Denizli Province, Inner-West Anatolia Region, Turkey. Helminthologia 2013, 50:57-66.
  • [78]Shen C-H, Steiner LA: Genome structure and thymic expression of an endogenous retrovirus in zebrafish. J Virol 2004, 78:899-911.
  • [79]Carré-Eusèbe D, Coudouel N, Magre S: OVEX1, a novel chicken endogenous retrovirus with sex-specific and left-right asymmetrical expression in gonads. Retrovirology 2009, 6:59.
  • [80]Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest ARR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P: The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009, 41:563-571.
  • [81]Sinzelle L, Carradec Q, Paillard E, Bronchain OJ, Pollet N: Characterization of a Xenopus tropicalis endogenous retrovirus with developmental and stress-dependent expression. J Virol 2011, 85:2167-2179.
  • [82]Dennis S, Sheth U, Feldman JL, English KA, Priess JR: C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog 2012, 8:e1002591.
  • [83]Kimelman D, Kirschner M, Scherson T: The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 1987, 48:399-407.
  • [84]Yang J, Tan C, Darken RS, Wilson PA, Klein PS: Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Dev Camb Engl 2002, 129:5743-5752.
  • [85]Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS: An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 2011, 357:478-491.
  • [86]Kigami D, Minami N, Takayama H, Imai H: MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 2003, 68:651-654.
  • [87]Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB: Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 2004, 7:597-606.
  • [88]Schultz RM: Regulation of zygotic gene activation in the mouse. BioEssays News Rev Mol Cell Dev Biol 1993, 15:531-538.
  • [89]Tadros W, Lipshitz HD: The maternal-to-zygotic transition: a play in two acts. Dev Camb Engl 2009, 136:3033-3042.
  • [90]Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL: Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 2012, 487:57-63.
  • [91]Wolf D, Goff SP: Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 2009, 458:1201-1204.
  • [92]Dunn CA, Romanish MT, Gutierrez LE, van de Lagemaat LN, Mager DL: Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 2006, 366:335-342.
  • [93]Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D: Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S A 2007, 104:18613-18618.
  • [94]Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D: Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci U S A 2010, 107:12992-12997.
  • [95]McCue AD, Slotkin RK: Transposable element small RNAs as regulators of gene expression. Trends Genet TIG 2012, 28:616-623.
  • [96]Oliver KR, Greene WK: Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mob DNA 2011, 2:8.
  • [97]Oliver KR, Greene WK: Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012, 2:2912-2933.
  • [98]Sandmeyer SB, Clemens KA: Function of a retrotransposon nucleocapsid protein. RNA Biol 2010, 7:642-654.
  • [99]Nethe M, Berkhout B, van der Kuyl AC: Retroviral superinfection resistance. Retrovirology 2005, 2:52.
  • [100]Weiss RA: On the concept and elucidation of endogenous retroviruses. Philos Trans R Soc Lond B Biol Sci 2013, 368:20120494.
  • [101]White JM, Delos SE, Brecher M, Schornberg K: Structures and Mechanisms of Viral Membrane Fusion Proteins. Crit Rev Biochem Mol Biol 2008, 43:189-219.
  • [102]Bénit L, Dessen P, Heidmann T: Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 2001, 75:11709-11719.
  • [103]Varela M, Spencer TE, Palmarini M, Arnaud F: Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann N Y Acad Sci 2009, 1178:157-172.
  • [104]Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A: Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 2009, 37:e123.
  • [105]Bowes JB, Snyder KA, Segerdell E, Gibb R, Jarabek C, Noumen E, Pollet N, Vize PD: Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res 2008, 36(Database issue):D761-767.
  • [106]Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam T-W, Li Y, Xu X, Wong GK-S, Wang J: SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014, 30:1660-1666.
  • [107]Li W, Godzik A: CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinforma Oxf Engl 2006, 22:1658-1659.
  • [108]Fu L, Niu B, Zhu Z, Wu S, Li W: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinforma Oxf Engl 2012, 28:3150-3152.
  • [109]McClure MA, Johnson MS, Feng DF, Doolittle RF: Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. Proc Natl Acad Sci U S A 1988, 85:2469-2473.
  • [110]Ellinghaus D, Kurtz S, Willhoeft U: LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 2008, 9:18.
  • [111]Katoh K, Standley DM: MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
  • [112]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [113]Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH: CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013, 41(Database issue):D348-352.
  • [114]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet TIG 2000, 16:276-277.
  • [115]Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 7:e1002195.
  • [116]Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008, 36(Database issue):D281-D288.
  • [117]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9:357-359.
  • [118]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
  • [119]Box GE, Cox DR: An analysis of transformations. J R Stat Soc Ser B Methodol 1964, 26:211-252.
  • [120]Shapiro SS, Wilk MB: An analysis of variance test for normality (complete samples). Biometrica 1965, 52:591-611.
  • [121]Levene H: Robust tests for equality of variances. In Contrib Probab Stat Essays Honor Harold Hotell. Stanford, CA: Stanford University Press; 1960:278-292.
  • [122]Kruskal WH, Wallis WA: Use of ranks in one-criterion variance analysis. J Am Stat Assoc 1952, 47:583.
  文献评价指标  
  下载次数:28次 浏览次数:9次