期刊论文详细信息
BMC Oral Health
Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH
Maud Langton3  Jenny Fäldt1  Maria Lövenklev2  Josefin Seth Caous1 
[1] Nobel Biocare AB, P.O. Box 5190, Gothenburg, SE-402 26, Sweden;SIK, The Swedish Institute for Food and Biotechnology, P.O. Box 5401, Gothenburg, SE-402 29, Sweden;Department of Food Science, SLU- Swedish University of Agricultural Sciences, PO Box 7051, Uppsala, SE-756 45, Sweden
关键词: Confocal laser scanning microscopy;    Peri-implant disease;    Dental implants;    Bacterial adhesion;   
Others  :  1126223
DOI  :  10.1186/1472-6831-13-4
 received in 2012-03-25, accepted in 2012-12-27,  发布年份 2013
PDF
【 摘 要 】

Background

With the rising demand for osseointegrated titanium implants for replacing missing teeth, often in patients with a history of periodontitis, implant-related infections have become an issue of growing concern. Novel methods for treating and preventing implant-associated infections are urgently needed. The aim of this study was to investigate if different pH, atmosphere and surface properties could restrict bacterial adhesion to titanium surfaces used in dental implants.

Methods

Titanium discs with machined or anodized (TiUnite™) surface were incubated with a co-culture of Streptococcus mitis and Actinomyces oris (early colonizers of oral surfaces) at pH 5.0, 7.0 and 9.0 at aerobic or anaerobic atmosphere. The adhesion was analysed by counting colony forming (CFU) units on agar and by confocal laser scanning microscopy (CLSM).

Results

The CFU analysis showed that a pH of 5.0 was found to significantly decrease the adhesion of S. mitis, and an aerobic atmosphere, the adhesion of A. oris. S. mitis was found in significantly less amounts on the anodized surface than the machined surface, while A. oris was found in equal amounts on both surfaces. The CLSM analysis confirmed the results from the CFU count and provided additional information on how the two oral commensal species adhered to the surfaces: mainly in dispersed clusters oriented with the groves of the machined surface and the pores of the anodized surface.

Conclusions

Bacterial adhesion by S. mitis and A. oris can be restricted by acidic pH and aerobic atmosphere. The anodized surface reduced the adhesion of S. mitis compared to the machined surface; while A. oris adhered equally well to the pores of the anodized surface and to the grooves of the machined surface. It is difficult to transfer these results directly into a clinical situation. However, it is worth further investigating these findings from an in vitro perspective, as well as clinically, to gain more knowledge of the effects acid pH and aerobic atmosphere have on initial bacterial adhesion.

【 授权许可】

   
2013 Seth Caous et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150218095515830.pdf 1382KB PDF download
Figure 6. 63KB Image download
Figure 5. 145KB Image download
Figure 4. 18KB Image download
Figure 3. 24KB Image download
Figure 2. 54KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Jungner M, Lundqvist P, Lundgren S: Oxidized titanium implants (Nobel Biocare TiUnite) compared with turned titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clin Oral Implants Res 2005, 16(3):308-312.
  • [2]Hultin M, Gustafsson A, Klinge B: Long-term evaluation of osseointegrated dental implants in the treatment of partly edentulous patients. J Clin Periodontol 2000, 27(2):128-133.
  • [3]Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ: A review of dental implants and infection. J Hosp Infect 2009, 72(2):104-110.
  • [4]Schou S, Holmstrup P, Worthington HV, Esposito M: Outcome of implant therapy in patients with previous tooth loss due to periodontitis. Clin Oral Implants Res 2006, 17(Suppl 2):104-123.
  • [5]Hultin M, Gustafsson A, Hallstrom H, Johansson LA, Ekfeldt A, Klinge B: Microbiological findings and host response in patients with peri-implantitis. Clin Oral Implants Res 2002, 13(4):349-358.
  • [6]Norowski PA Jr, Bumgardner JD: Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 2009, 88(2):530-543.
  • [7]Esposito M, Grusovin MG, Kakisis I, Coulthard P, Worthington HV: Interventions for replacing missing teeth: treatment of perimplantitis. Cochrane Database Syst Rev 2008, 16(2):CD004970.
  • [8]Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y: Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling: J Bioadhesion Biofilm Res 2010, 26(7):851-858.
  • [9]Renvert S, Roos-Jansaker AM, Claffey N: Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 2008, 35(8 Suppl):305-315.
  • [10]Mombelli A, Lang NP: The diagnosis and treatment of peri-implantitis. Periodontol 2000 1998, 17:63-76.
  • [11]Bowden GH, Li YH: Nutritional influences on biofilm development. Adv Dent Res 1997, 11(1):81-99.
  • [12]Konttinen YT, Takagi M, Mandelin J, Lassus J, Salo J, Ainola M, Li TF, Virtanen I, Liljestrom M, Sakai H, et al.: Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis. J Bone Miner Res 2001, 16(10):1780-1786.
  • [13]Nyako EA, Watson CJ, Preston AJ: Determination of the pH of peri-implant crevicular fluid in successful and failing dental implant sites: a pilot study. Arch Oral Biol 2005, 50(12):1055-1059.
  • [14]Roos-Jansaker AM: Long time follow up of implant therapy and treatment of peri-implantitis. Swed Dent J Suppl 2007, 188:7-66.
  • [15]Loesche WJ, Gusberti F, Mettraux G, Higgins T, Syed S: Relationship between oxygen tension and subgingival bacterial flora in untreated human periodontal pockets. Infect Immun 1983, 42(2):659-667.
  • [16]Bowden GH, Hamilton IR: Environmental pH as a factor in the competition between strains of the oral streptococci Streptococcus mutans, S. sanguis, and "S. mitior" growing in continuous culture. Can J Microbiol 1987, 33(9):824-827.
  • [17]Matsui R, Cvitkovitch D: Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol 2010, 5:403-417.
  • [18]Li YH, Lau PC, Tang N, Svensater G, Ellen RP, Cvitkovitch DG: Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol 2002, 184(22):6333-6342.
  • [19]Li YH, Bowden GH: The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res 1994, 73(10):1615-1626.
  • [20]Gomes BP, Souza SF, Ferraz CC, Teixeira FB, Zaia AA, Valdrighi L, Souza-Filho FJ: Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. Int Endod J 2003, 36(4):267-275.
  • [21]Bystrom A, Sundqvist G: The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. Int Endod J 1985, 18(1):35-40.
  • [22]Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L, Cigada A: Decreased bacterial adhesion to surface-treated titanium. Int J Artific Org 2005, 28(7):718-730.
  • [23]Scarano A, Piattelli A, Polimeni A, Di Iorio D, Carinci F: Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws:an in vivo human study. J Periodontol 2010, 81:1466-1471.
  • [24]Hall J, Lausmaa J: Properties of a new porous oxide surface on titanium implants. Appl Osseoint Res 2000, 1(1):5-8.
  • [25]Albrektsson T, Wennerberg A: Oral implant surfaces: Part 2–review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004, 17(5):544-564.
  • [26]Wennerberg A, Ohlsson R, Rosen BG, Andersson B: Characterizing three-dimensional topography of engineering and biomaterial surfaces by confocal laser scanning and stylus techniques. Med Eng Phys 1996, 18(7):548-556.
  • [27]Baranyi J, Roberts TA: A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 1994, 23(3–4):277-294.
  • [28]Marsh P, Martin MV, Lewis MAO, Williams DW: Oral Microbiology. Churchill Livingstone Elsevier, UK; 2009.
  • [29]Gagnon GA, Slawson RM: An efficient biofilm removal method for bacterial cells exposed to drinking water. J Microbiol Methods 1999, 34:203-214.
  • [30]Knox KW, Hardy LN, Markevics LJ, Evans JD, Wicken AJ: Comparative studies on the effect of growth conditions on adhesion, hydrophobicity, and extracellular protein profile of Streptococcus sanguis G9B. Infect Immun 1985, 50(2):545-554.
  • [31]Rosan B, Appelbaum B, Campbell LK, Knox KW, Wicken AJ: Chemostat studies of the effect of environmental control on Streptococcus sanguis adherence to hydroxyapatite. Infect Immun 1982, 35(1):64-70.
  • [32]Horiuchi M, Washio J, Mayanagi H, Takahashi N: Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: a possible ecological determinant in dental plaque. Oral Microbiol Immunol 2009, 24(4):319-324.
  • [33]Svensäter G, Larsson U-B, Greif ECG, Cvitkovitch DG, Hamilton IR: Acid tolerance responce and survival by oral bacteria. Oral Microbiol Immunol 1997, 12:266-273.
  • [34]Jefferson KK, Pier DB, Goldmann DA, Pier GB: The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J Bacteriol 2004, 186(8):2449-2456.
  • [35]Fux CA, Costerton JW, Stewart PS, Stoodley P: Survival strategies of infectious biofilms. Trends in Microb 2005, 13(1):34-40.
  • [36]Szomolay B, Klapper I, Dockery J, Stewart PS: Adaptive responses to antimicrobial agents in biofilms. Environ Microb 2005, 7(8):1186-1191.
  • [37]Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D: Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 2001, 183(8):2624-2633.
  • [38]Rachid S, Cho S, Ohlsen K, Hacker J, Ziebuhr W: Induction of Staphylococcus epidermidis biofilm formation by environmental factors: the possible involvement of the alternative transcription factor sigB. Adv Exp Med Biol 2000, 485:159-166.
  • [39]Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W: Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 2000, 182(23):6824-6826.
  • [40]de Paz LE C, Bergenholtz G, Dahlén G, Svensäter G: Response to alkaline stress by root canal bacteria in biofilms. Int Endod J 2007, 40(5):11.
  • [41]Zhao L, Chu PK, Zhang Y, Wu Z: Antibacterial coatings on titanium implants, Review. J Biomed Mater Res B Appl Biomater 2009, 91B:470-480.
  • [42]Gopol J, Muraleedharan P, George P, Khatak HS: Investigations of the antibacterial properties of an anodized titanium alloy. Trends Biomater Artif Organs 2003, 17(1):13-18.
  • [43]Yamauchi M, Yamamoto K, Wakabayashi M, Kawano J: In vitro adherence of microorganisms to denture base resin with different surface texture. Dent Mater J 1990, 9(1):19-24.
  • [44]Burgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M: In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res 2010, 21(2):156-164.
  • [45]Subramani K, Jung RE, Molenberg A, Hammerle CH: Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009, 24(4):616-626.
  • [46]Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M: Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 2008, 23(2):327-334.
  • [47]Quirynen M, Bollen CM: The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995, 22(1):1-14.
  • [48]Fröjd V, de Paz LE C, Andersson M, Wennberg A, Davies JR, Svensäter G: In situ analysis of multispecies biofilm formation on customized titanium surfaces. Mol Oral Microb 2011, 26:241-252.
  文献评价指标  
  下载次数:22次 浏览次数:11次