期刊论文详细信息
BMC Microbiology
Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii
Laurent Hébert2  Sandrine Petry2  Claire Laugier2  Anne Vianney1  Julie Allombert1 
[1] CNRS, UMR5308, Lyon, France;ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, 14430 Goustranville, France
关键词: Endosymbiont;    Acanthamoeba castellanii;    Contagious equine metritis;    Taylorella asinigenitalis;    Taylorella equigenitalis;   
Others  :  1141647
DOI  :  10.1186/1471-2180-14-69
 received in 2014-01-27, accepted in 2014-03-13,  发布年份 2014
PDF
【 摘 要 】

Background

Taylorella equigenitalis is the causative agent of contagious equine metritis, a sexually-transmitted infection of Equidae characterised in infected mares by abundant mucopurulent vaginal discharge and a variable degree of vaginitis, cervicitis or endometritis, usually resulting in temporary infertility. The second species of the Taylorella genus, Taylorella asinigenitalis, is considered non-pathogenic, although mares experimentally infected with this bacterium can develop clinical signs of endometritis. To date, little is understood about the basic molecular virulence and persistence mechanisms employed by the Taylorella species. To clarify these points, we investigated whether the host-pathogen interaction model Acanthamoeba castellanii was a suitable model for studying taylorellae.

Results

We herein demonstrate that both species of the Taylorella genus are internalised by a mechanism involving the phagocytic capacity of the amoeba and are able to survive for at least one week inside the amoeba. During this one-week incubation period, taylorellae concentrations remain strikingly constant and no overt toxicity to amoeba cells was observed.

Conclusions

This study provides the first evidence of the capacity of taylorellae to survive in a natural environment other than the mammalian genital tract, and shows that the alternative infection model, A. castellanii, constitutes a relevant alternative system to assess host-pathogen interactions of taylorellae. The survival of taylorellae inside the potential environmental reservoir A. castellanii brings new insight, fostering a broader understanding of taylorellae biology and its potential natural ecological niche.

【 授权许可】

   
2014 Allombert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327101715792.pdf 722KB PDF download
Figure 5. 26KB Image download
Figure 4. 64KB Image download
Figure 3. 28KB Image download
Figure 2. 35KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Wakeley PR, Errington J, Hannon S, Roest HIJ, Carson T, Hunt B, Sawyer J, Heath P: Development of a real time PCR for the detection of Taylorella equigenitalis directly from genital swabs and discrimination from Taylorella asinigenitalis. Vet Microbiol 2006, 118(3–4):247-254.
  • [2]Timoney PJ: Horse species symposium: contagious equine metritis: an insidious threat to the horse breeding industry in the United States. J Anim Sci 2011, 89(5):1552-1560.
  • [3]Matsuda M, Moore JE: Recent advances in molecular epidemiology and detection of Taylorella equigenitalis associated with contagious equine metritis (CEM). Vet Microbiol 2003, 97(1–2):111-122.
  • [4]Luddy S, Kutzler MA: Contagious equine metritis within the United States: a review of the 2008 outbreak. J Equine Vet Sci 2010, 30(8):393-400.
  • [5]Crowhurst RC: Genital infection in mares. Vet Rec 1977, 100(22):476.
  • [6]Timoney PJ, Ward J, Kelly P: A contagious genital infection of mares. Vet Rec 1977, 101(5):103.
  • [7]Schulman ML, May CE, Keys B, Guthrie AJ: Contagious equine metritis: artificial reproduction changes the epidemiologic paradigm. Vet Microbiol 2013, 167(1–2):2-8.
  • [8]Jang S, Donahue J, Arata A, Goris J, Hansen L, Earley D, Vandamme P, Timoney P, Hirsh D: Taylorella asinigenitalis sp. nov., a bacterium isolated from the genital tract of male donkeys (Equus asinus). Int J Syst Evol Microbiol 2001, 51(3):971-976.
  • [9]Katz JB, Evans LE, Hutto DL, Schroeder-Tucker LC, Carew AM, Donahue JM, Hirsh DC: Clinical, bacteriologic, serologic, and pathologic features of infections with atypical Taylorella equigenitalis in mares. J Am Vet Med Assoc 2000, 216(12):1945-1948.
  • [10]Hébert L, Moumen B, Pons N, Duquesne F, Breuil M-F, Goux D, Batto J-M, Laugier C, Renault P, Petry S: Genomic characterization of the Taylorella genus. PLoS One 2012, 7(1):e29953.
  • [11]Donahue JM, Timoney PJ, Carleton CL, Marteniuk JV, Sells SF, Meade BJ: Prevalence and persistence of Taylorella asinigenitalis in male donkeys. Vet Microbiol 2012, 160(3–4):435-442.
  • [12]Hauser H, Richter DC, van Tonder A, Clark L, Preston A: Comparative genomic analyses of the Taylorellae. Vet Microbiol 2012, 159(1–2):195-203.
  • [13]Ghosh W, Alam M, Roy C, Pyne P, George A, Chakraborty R, Majumder S, Agarwal A, Chakraborty S, Majumdar S, Gupta SK: Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making. PLoS One 2013, 8(5):e64856.
  • [14]Bleumink-Pluym N, ter Laak E, Houwers D, van der Zeijst B: Differences between Taylorella equigenitalis strains in their invasion of and replication in cultured cells. Clin Diagn Lab Immunol 1996, 3(1):47-50.
  • [15]Rowbotham TJ: Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 1980, 33(12):1179-1183.
  • [16]Greub G, Raoult D: Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004, 17(2):413-433.
  • [17]Taylor M, Mediannikov O, Raoult D, Greub G: Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol Med Microbiol 2012, 64(1):21-31.
  • [18]Snelling WJ, Moore JE, McKenna JP, Lecky DM, Dooley JS: Bacterial-protozoa interactions; an update on the role these phenomena play towards human illness. Microbes Infect 2006, 8(2):578-587.
  • [19]Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarraud S, Bouchier C, Vandenesch F, Kunst F, Etienne J, Glaser P, Buchrieser C: Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004, 36(11):1165-1173.
  • [20]Hébert L, Moumen B, Duquesne F, Breuil M-F, Laugier C, Batto J-M, Renault P, Petry S: Genome sequence of Taylorella equigenitalis MCE9, the causative agent of contagious equine metritis. J Bacteriol 2011, 193(7):1785.
  • [21]Hervet E, Charpentier X, Vianney A, Lazzaroni JC, Gilbert C, Atlan D, Doublet P: Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 2011, 79(5):1936-1950.
  • [22]Khan NA: Pathogenicity, morphology, and differentiation of Acanthamoeba. Curr Microbiol 2001, 43(6):391-395.
  • [23]Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A, Shuman HA: Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog 2009, 5(7):e1000501.
  • [24]Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y: Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 2005, 71(1):20-28.
  • [25]Waterfield NR, Wren BW, Ffrench-Constant RH: Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2004, 2(10):833-841.
  • [26]Joseph B, Goebel W: Life of Listeria monocytogenes in the host cells’ cytosol. Microbes Infect 2007, 9(10):1188-1195.
  • [27]Breuil MF, Duquesne F, Laugier C, Petry S: Phenotypic and 16S ribosomal RNA gene diversity of Taylorella asinigenitalis strains isolated between 1995 and 2008. Vet Microbiol 2011, 148(2–4):260-266.
  • [28]Büchner P: Endosymbiose der Tiere mit Pflanzlichen Mikroorganismen. Basel, Switzerland: Gebundene Ausgabe; 1953.
  • [29]Timoney PJ, Harrington A, McArdle J, O’Reilly P: Survival properties of the causal agent of contagious equine metritis 1977. Vet Rec 1978, 102(7):152.
  • [30]Horn M: Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 2008, 62(1):113-131.
  • [31]Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan CS, Hutchins AP, Weinmeier T, Rattei T, Chu JS, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P: Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 2013, 14(2):R11. BioMed Central Full Text
  • [32]Inglis TJ, Rigby P, Robertson TA, Dutton NS, Henderson M, Chang BJ: Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infect Immun 2000, 68(3):1681-1686.
  • [33]Marolda CL, Hauröder B, John MA, Michel R, Valvano MA: Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 1999, 145(Pt 7):1509-1517.
  文献评价指标  
  下载次数:73次 浏览次数:44次