期刊论文详细信息
BMC Structural Biology
Crystal structure of O-methyltransferase CalO6 from the calicheamicin biosynthetic pathway: a case of challenging structure determination at low resolution
Sylvie Garneau-Tsodikova1  Christopher T. Walsh2  Caixia Hou1  Oleg V. Tsodikov1 
[1] Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, 40536-0596, KY, USA;Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, 02215, MA, USA
关键词: Natural product biosynthesis;    Methylation;    Low-resolution refinement;    Enediyne;    Anticancer drug;   
Others  :  1220323
DOI  :  10.1186/s12900-015-0040-6
 received in 2015-03-30, accepted in 2015-07-03,  发布年份 2015
PDF
【 摘 要 】

Background

Calicheamicins (CAL) are enedyine natural products with potent antibiotic and cytotoxic activity, used in anticancer therapy. The O-methyltransferase CalO6 is proposed to catalyze methylation of the hydroxyl moiety at the C2 position of the orsellinic acid group of CAL.

Results

Crystals of CalO6 diffracted non-isotropically, with the usable data extending to 3.4 Å. While no single method of crystal structure determination yielded a structure of CalO6, we were able to determine its structure by using molecular replacement-guided single wavelength anomalous dispersion by using diffraction data from native crystals of CalO6 and a highly non-isomorphous mercury derivative. The structure of CalO6 reveals the methyltransferase fold and dimeric organization characteristic of small molecule O-methyltransferases involved in secondary metabolism in bacteria and plants. Uncommonly, CalO6 was crystallized in the absence of S-adenosylmethionine (SAM; the methyl donor) or S-adenosylhomocysteine (SAH; its product).

Conclusions

Likely as a consequence of the dynamic nature of CalO6 in the absence of its cofactor, the central region of CalO6, which forms a helical lid-like structure near the active site in CalO6 and similar enzymes, is not observed in the electron density. We propose that this region controls the entry of SAM into and the exit of SAH from the active site of CalO6 and shapes the active site for substrate binding and catalysis.

【 授权许可】

   
2015 Tsodikov et al.

【 预 览 】
附件列表
Files Size Format View
20150722022535619.pdf 1295KB PDF download
Fig. 4. 78KB Image download
Fig. 3. 60KB Image download
Fig. 2. 39KB Image download
Fig. 1. 22KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Zein N, Sinha AM, McGahren WJ, Ellestad GA: Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988, 240(4856):1198-201.
  • [2]O’Hear C, Rubnitz JE: Recent research and future prospects for gemtuzumab ozogamicin: could it make a comeback? Expert Rev Hematol 2014, 7(4):427-9.
  • [3]Parikh SA, Litzow MR: Philadelphia chromosome-negative acute lymphoblastic leukemia: therapies under development. Future Oncol 2014, 10(14):2201-12.
  • [4]Drak J, Iwasawa N, Danishefsky S, Crothers DM: The carbohydrate domain of calicheamicin gamma I1 determines its sequence specificity for DNA cleavage. Proc Natl Acad Sci U S A 1991, 88(17):7464-8.
  • [5]Liu C, Smith BM, Ajito K, Komatsu H, Gomez-Paloma L, Li T, et al.: Sequence-selective carbohydrate-DNA interaction: dimeric and monomeric forms of the calicheamicin oligosaccharide interfere with transcription factor function. Proc Natl Acad Sci U S A 1996, 93(2):940-4.
  • [6]Ikemoto N, Kumar RA, Ling TT, Ellestad GA, Danishefsky SJ, Patel DJ: Calicheamicin-DNA complexes: warhead alignment and saccharide recognition of the minor groove. Proc Natl Acad Sci U S A 1995, 92(23):10506-10.
  • [7]Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, et al.: The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 2002, 297(5584):1173-6.
  • [8]Singh S, Nandurkar NS, Thorson JS: Characterization of the calicheamicin orsellinate C2-O-methyltransferase CalO6. ChemBioChem 2014, 15(10):1418-21.
  • [9]Chang A, Singh S, Bingman CA, Thorson JS, Phillips GN Jr: Structural characterization of CalO1: a putative orsellinic acid methyltransferase in the calicheamicin-biosynthetic pathway. Acta Crystallogr Sect D 2011, 67(Pt 3):197-203.
  • [10]Jansson A, Koskiniemi H, Mantsala P, Niemi J, Schneider G: Crystal structure of a ternary complex of DnrK, a methyltransferase in daunorubicin biosynthesis, with bound products. J Biol Chem 2004, 279(39):41149-56.
  • [11]Doublie S: Preparation of selenomethionyl proteins for phase determination. Methods Enzymol 1997, 276:523-30.
  • [12]Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.
  • [13]Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D: Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2006, 103(21):8060-5.
  • [14]Padilla JE, Yeates TO: A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr Sect D 2003, 59(Pt 7):1124-30.
  • [15]Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D 2010, 66(Pt 2):213-21.
  • [16]Terwilliger TC, Berendzen J: Automated MAD and MIR structure solution. Acta Crystallogr Sect D 1999, 55:849-61.
  • [17]McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ: Phaser crystallographic software. J Appl Crystallogr 2007, 40(Pt 4):658-74.
  • [18]Vagin A, Teplyakov A: MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997, 30:1022-5.
  • [19]Jansson A, Niemi J, Lindqvist Y, Mantsala P, Schneider G: Crystal structure of aclacinomycin-10-hydroxylase, a S-adenosyl-L-methionine-dependent methyltransferase homolog involved in anthracycline biosynthesis in Streptomyces purpurascens. J Mol Biol 2003, 334(2):269-80.
  • [20]McCoy AJ, Storoni LC, Read RJ: Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr Sect D 2004, 60(Pt 7):1220-8.
  • [21]Terwilliger TC: Maximum-likelihood density modification. Acta Crystallogr Sect D 2000, 56(Pt 8):965-72.
  • [22]Emsley P, Cowtan K: Coot: model-building toos for molecular graphics. Acta Crystallogr Sect D 2004, 60:2126-32.
  • [23]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D 1997, 53(3):240-55.
  • [24]Sigler PB, Blow DM: A means of promoting heavy-atom binding in protein crystals. J Mol Biol 1965, 14(2):640-4.
  • [25]Louie GV, Bowman ME, Tu Y, Mouradov A, Spangenberg G, Noel JP: Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 2010, 22(12):4114-27.
  • [26]Botros HG, Legrand P, Pagan C, Bondet V, Weber P, Ben-Abdallah M, et al.: Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway. J Pineal Res 2013, 54(1):46-57.
  • [27]Zubieta C, He XZ, Dixon RA, Noel JP. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol. 2001;8(3):271–9.
  • [28]Jansson A, Koskiniemi H, Erola A, Wang J, Mantsala P, Schneider G, et al.: Aclacinomycin 10-hydroxylase is a novel substrate-assisted hydroxylase requiring S-adenosyl-L-methionine as cofactor. J Biol Chem 2005, 280(5):3636-44.
  • [29]Ehler A, Benz J, Schlatter D, Rudolph MG: Mapping the conformational space accessible to catechol-O-methyltransferase. Acta Crystallogr Sect D 2014, 70(Pt 8):2163-74.
  • [30]Malkin AJ, Thorne RE: Growth and disorder of macromolecular crystals: insights from atomic force microscopy and X-ray diffraction studies. Methods 2004, 34(3):273-99.
  • [31]Karplus PA, Diederichs K: Linking crystallographic model and data quality. Science 2012, 336(6084):1030-3.
  • [32]Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26:283-91.
  文献评价指标  
  下载次数:78次 浏览次数:27次