期刊论文详细信息
BMC Genetics
Comprehensive annotation of microRNA expression profiles
Zhong-Dang Xiao1  Ning-Ping Huang1  Fei-Hu Hu1  Fei Yang1  Bo Sun1 
[1] State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
关键词: Comprehensive annotation;    Deep sequencing;    Microarray;    MicroRNA;   
Others  :  1086125
DOI  :  10.1186/1471-2156-14-120
 received in 2013-07-19, accepted in 2013-11-26,  发布年份 2013
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad specificity of miRNAs, which may target several mRNAs.

Result

In this study, we developed a method for comprehensive annotation of miRNA array or deep sequencing data for investigation of cellular biological effects. Using this method, the specific pathways and biological processes involved in Alzheimer’s disease were predicted with high correlation in four independent samples. Furthermore, this method was validated for evaluation of cadmium telluride (CdTe) nanomaterial cytotoxicity. As a result, apoptosis pathways were selected as the top pathways associated with CdTe nanoparticle exposure, which is consistent with previous studies.

Conclusions

Our findings contribute to the validation of miRNA microarray or deep sequencing results for early diagnosis of disease and evaluation of the biological safety of new materials and drugs.

【 授权许可】

   
2013 Sun et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113183414849.pdf 1213KB PDF download
Figure 4. 97KB Image download
Figure 3. 51KB Image download
Figure 2. 92KB Image download
60KB Image download
【 图 表 】

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [2]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
  • [3]Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011, 12(2):99-110.
  • [4]Hu W, Coller J: What comes first: translational repression or mRNA degradation? The deepening mystery of microRNA function. Cell Res 2012, 22(9):1322-1324.
  • [5]Morita T, Mochizuki Y, Aiba H: Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc Natl Acad Sci USA 2006, 103(13):4858-4863.
  • [6]Li S, Wang H, Qi Y, Tu J, Bai Y, Tian T, Huang N, Wang Y, Xiong F, Lu Z, et al.: Assessment of nanomaterial cytotoxicity with SOLiD sequencing-based microRNA expression profiling. Biomaterials 2011, 32(34):9021-9030.
  • [7]Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010, 16(5):991-1006.
  • [8]Li X, Jiang W, Li W, Lian B, Wang S, Liao M, Chen X, Wang Y, Lv Y, Wang S, et al.: Dissection of human MiRNA regulatory influence to subpathway. Brief Bioinform 2012, 13(2):175-186.
  • [9]Wang Y-P, Li K-B: Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics 2009, 10(1):218. BioMed Central Full Text
  • [10]Ulitsky I, Laurent LC, Shamir R: Towards computational prediction of microRNA function and activity. Nucleic Acids Res 2010, 38(15):e160.
  • [11]Corrada D, Viti F, Merelli I, Battaglia C, Milanesi L: myMIR: a genome-wide microRNA targets identification and annotation tool. Brief Bioinform 2011, 12(6):588-600.
  • [12]Sales G, Coppe A, Bicciato S, Bortoluzzi S, Romualdi C: Impact of probe annotation on the integration of miRNA–mRNA expression profiles for miRNA target detection. Nucleic Acids Res 2010, 38(7):e97.
  • [13]John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol 2004, 2(11):e363.
  • [14]Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian MicroRNA targets. Cell 2003, 115(7):787-798.
  • [15]Rajewsky N: microRNA target predictions in animals. Nat Genet 2006.
  • [16]Li S, Wang Y, Wang H, Bai Y, Liang G, Wang Y, Huang N, Xiao Z: MicroRNAs as participants in cytotoxicity of CdTe quantum dots in NIH/3 T3 cells. Biomaterials 2011, 32(15):3807-3814.
  • [17]Gusev Y: Computational methods for analysis of cellular functions and pathways collectively targeted by differentially expressed microRNA. Methods 2008, 44(1):61-72.
  • [18]Hua Y-J, Tang Z-Y, Tu K, Zhu L, Li Y-X, Xie L, Xiao H-S: Identification and target prediction of miRNAs specifically expressed in rat neural tissue. BMC Genomics 2009, 10(1):214. BioMed Central Full Text
  • [19]Yan X, Chao T, Tu K, Zhang Y, Xie L, Gong Y, Yuan J, Qiang B, Peng X: Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 2007, 581(8):1587-1593.
  • [20]Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010, 11(8):R90. BioMed Central Full Text
  • [21]Cao S, Chen S-J: Predicting kissing interactions in microRNA–target complex and assessment of microRNA activity. Nucleic Acids Res 2012, 40(10):4681-4690.
  • [22]Chi SW, Hannon GJ, Darnell RB: An alternative mode of microRNA target recognition. Nat Struct Mol Biol 2012, 19(3):321-327.
  • [23]Nunez-Iglesias J, Liu C-C, Morgan TE, Finch CE, Zhou XJ: Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PloS one 2010, 5(2):e8898.
  • [24]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al.: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
  • [25]Brennecke J, Stark A, Russell RB, Cohen SM: Principles of MicroRNA–target recognition. PLoS Biol 2005, 3(3):e85.
  • [26]Lai EC, Tam B, Rubin GM: Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 2005, 19(9):1067-1080.
  • [27]Farh KK-H, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005, 310(5755):1817-1821.
  • [28]Sahoo S, Albrecht AA: Ranking of microRNA target prediction scores by Pareto front analysis. Comput Biol Chem 2010, 34(5–6):284-292.
  • [29]Friedman RC, Farh KK-H, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19(1):92-105.
  • [30]Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011, 18(10):1139-1146.
  • [31]De Ferrari GV, Inestrosa NC: Wnt signaling function in Alzheimer’s disease. Brain Res Rev 2000, 33(1):1-12.
  • [32]Luo J, Chen J, Deng Z-L, Luo X, Song W-X, Sharff KA, Tang N, Haydon RC, Luu HH, He T-C: Wnt signaling and human diseases: what are the therapeutic implications? Lab Invest 2007, 87(2):97-103.
  • [33]Kim EK, Choi E-J: Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta 2010, 1802(4):396-405.
  • [34]Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD: β-amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors:in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 2001, 21(12):4125-4133.
  • [35]Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K, Ihara Y, Mikoshiba K, et al.: Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 2005, 10(2):165-179.
  • [36]Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM: A genomic pathway approach to a complex disease: axon guidance and parkinson disease. PLoS Genet 2007, 3(6):e98.
  • [37]Keating DJ, Chen C, Pritchard MA: Alzheimer’s disease and endocytic dysfunction: clues from the down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 2006, 5(4):388-401.
  • [38]Zhang C, Lambert MP, Bunch C, Barber K, Wade WS, Krafft GA, Klein WL: Focal adhesion kinase expressed by nerve cell lines shows increased tyrosine phosphorylation in response to Alzheimer’s a beta peptide. J Biol Chem 1994, 269(41):25247-25250.
  • [39]Nakase T, Naus CCG: Gap junctions and neurological disorders of the central nervous system. Biochimica et Biophysica Acta 2004, 1662(1–2):149-158.
  • [40]Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, et al.: Secreted amyloid [beta]-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996, 2(8):864-870.
  • [41]Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ: Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 2001, 276(23):20466-20473.
  • [42]Mazurek MF, Beal MF, Bird ED, Martin JB: Oxytocin in Alzheimer’s disease. Neurology 1987, 37(6):1001.
  • [43]Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP: Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nano 2009, 4(10):688-694.
  • [44]Galanzha EI, Shashkov EV, Kelly T, Kim J-W, Yang L, Zharov VP: In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nano 2009, 4(12):855-860.
  • [45]Medintz IL, Uyeda HT, Goldman ER, Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005, 4(6):435-446.
  • [46]Lovrić J, Cho SJ, Winnik FM, Maysinger D: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 2005, 12(11):1227-1234.
  • [47]Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM: Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007, 23(4):1974-1980.
  • [48]Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D: Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005, 83(5):377-385.
  • [49]Khatchadourian A, Maysinger D: Lipid droplets: their role in nanoparticle-induced oxidative stress. Mol Pharm 2009, 6(4):1125-1137.
  文献评价指标  
  下载次数:28次 浏览次数:3次