BMC Evolutionary Biology | |
Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar | |
Anita Kloss-Brandstätter1  Torpong Sanguansermsri2  Basil Horst4  Angelika Manhart1  David Horst5  Lukas Forer3  Dominic Pacher1  Sebastian Schönherr3  Hansi Weißensteiner3  Gertraud Erhart1  Jürgen Horst6  Monika Summerer1  | |
[1] Division of Genetic Epidemiology, Innsbruck Medical University, Schöpfstraße 41, 6020 Innsbruck, Austria;Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand;Institute of Computer Science, University of Innsbruck, Innsbruck, Austria;Department of Dermatology, Columbia University, New York, NY, USA;Institute of Pathology, LMU Munich, Munich, Germany;Institut für Humangenetik, Universität Münster, Münster, Germany | |
关键词: Demographic history; Bamar; Karen; Southeast Asia; Burma; Gene flow; Migration; Population genetics; Control region; Complete mtDNA genome; Haplogroup; | |
Others : 858072 DOI : 10.1186/1471-2148-14-17 |
|
received in 2013-10-01, accepted in 2014-01-26, 发布年份 2014 | |
【 摘 要 】
Background
Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased.
Results
Our aim was to search for genetic footprints of Myanmar’s geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards.
Conclusion
Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia.
【 授权许可】
2014 Summerer et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140723092527796.pdf | 2997KB | download | |
51KB | Image | download | |
71KB | Image | download | |
118KB | Image | download | |
56KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Brown WM, George M Jr, Wilson AC: Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 1979, 76:1967-1971.
- [2]Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, et al.: Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 1987, 18:489-522.
- [3]Ingman M, Kaessmann H, Pääbo S, Gyllensten U: Mitochondrial genome variation and the origin of modern humans. Nature 2000, 408:708-713.
- [4]Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, et al.: Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet 2009, 84:740-759.
- [5]Endicott P, Ho SY, Metspalu M, Stringer C: Evaluating the mitochondrial timescale of human evolution. Trends Ecol Evol 2009, 24:515-521.
- [6]Kivisild T, Shen P, Wall DP, Do B, Sung R, Davis K, et al.: The role of selection in the evolution of human mitochondrial genomes. Genetics 2006, 172:373-387.
- [7]Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, et al.: Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 2003, 100:171-176.
- [8]Kong QP, Sun C, Wang HW, Zhao MA, Wang WZ, Zhong L, et al.: Large-scale mtDNA screening reveals a surprising matrilineal complexity in east asia and its implications to the peopling of the region. Mol Biol Evol 2011, 28:513-522.
- [9]Wang HW, Mitra B, Chaudhuri TK, Palanichamy MG, Kong QP, Zhang YP: Mitochondrial DNA evidence supports northeast Indian origin of the aboriginal Andamanese in the Late Paleolithic. J Genet Genomics 2011, 38:117-122.
- [10]Su B, Xiao JH, Underhill P, Deka R, Zhang WL, Akey J, et al.: Y-chromosome evidence for a northward migration of modern humans into eastern Asia during the last Ice Age. Am J Hum Genet 1999, 65:1718-1724.
- [11]Su B, Xiao CJ, Deka R, Seielstad MT, Kangwanpong D, Xiao JH, et al.: Y chromosome haplotypes reveal prehistorical migrations to the Himalayas. Hum Genet 2000, 107:582-590.
- [12]Yao Y-G, Kong Q-P, Bandelt H-J, Kivisild T, Zhang Y-P: Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet 2002, 70:635-651.
- [13]Cai X, Qin Z, Wen B, Xu S, Wang Y, Lu Y, et al.: Human migration through bottlenecks from Southeast Asia into East Asia during Last Glacial Maximum revealed by Y chromosomes. Plos One 2011, 6:e24282.
- [14]Wen B, Xie X, Gao S, Li H, Shi H, Song X, et al.: Analyses of genetic structure of Tibeto-Burman populations reveals sex-biased admixture in southern Tibeto-Burmans. Am J Hum Genet 2004, 74:856-865.
- [15]Diamond J, Bellwood P: Farmers and their languages: the first expansions. Science 2003, 300:597-603.
- [16]Lieberman V: Strange Parallels: Southeast Asia in Global Context, c. 800–1830. Vol. 1: Integration on the Mainland. Cambridge, UK: Cambridge University Press; 2003.
- [17]Christian JL: Trans-Burma trade routes to China. Pac Aff 1940, 13:173-191.
- [18]Hill C, Soares P, Mormina M, Macaulay V, Clarke D, Blumbach PB, et al.: A mitochondrial stratigraphy for island southeast Asia. Am J Hum Genet 2007, 80:29-43.
- [19]Endicott P, Ho SY: A Bayesian evaluation of human mitochondrial substitution rates. Am J Hum Genet 2008, 82:895-902.
- [20]Peng M-S, Quang HH, Dang K-P, Trieu AV, Wang H-W, Yao Y-G, et al.: Tracing the Austronesian footprint in Mainland Southeast Asia: a perspective from mitochondrial DNA. Mol Biol Evol 2010, 27:2417-2430.
- [21]Soares P, Rito T, Trejaut J, Mormina M, Hill C, Tinkler-Hundal E, et al.: Ancient voyaging and polynesian origins. Am J Hum Genet 2011, 88:239-247.
- [22]Gunnarsdóttir ED, Li MK, Bauchet M, Finstermeier K, Stoneking M: High-throughput sequencing of complete human mtDNA genomes from the Philippines. Genome Res 2011, 21:1-11.
- [23]Bodner M, Zimmermann B, Röck A, Kloss-Brandstätter A, Horst D, Horst B, et al.: Southeast Asian diversity: first insights into the complex mtDNA structure of Laos. BMC Evol Biol 2011, 11:49. BioMed Central Full Text
- [24]Atkinson QD, Gray RD, Drummond AJ: mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory. Mol Biol Evol 2008, 25:468-474.
- [25]Smith M: Ethnic groups in Burma: Development, Democracy and Human Rights. 8th edition. Anti-Slavery International: London, UK; 1994.
- [26]Malseed K: Where there is no movement: Local resistance and the potential for solidarity. J Agrar Change 2008, 8:489-514.
- [27]van Oven M: Revision of the mtDNA tree and corresponding haplogroup nomenclature. Proc Natl Acad Sci U S A 2010, 107:E38-E39.
- [28]van Oven M, Kayser M: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 2009, 30:E386-E394.
- [29]Zimmermann B, Bodner M, Amory S, Fendt L, Röck AW, Horst D, et al.: Forensic and phylogeographic characterization of mtDNA lineages from northern Thailand (Chiang Mai). Int J Legal Med 2009, 123:495-501.
- [30]Irwin JA, Saunier JL, Strouss KM, Diegoli TM, Sturk KA, O’Callaghan JE, et al.: Mitochondrial control region sequences from a Vietnamese population sample. Int J Legal Med 2008, 122:257-259.
- [31]Irwin JA, Saunier JL, Beh P, Strouss KM, Paintner CD, Parsons TJ: Mitochondrial DNA control region variation in a population sample from Hong Kong, China. Forensic Sci Int Genet 2009, 3:e119-e125.
- [32]Jinam TA, Hong LC, Phipps ME, Stoneking M, Ameen M, Edo J, et al.: Evolutionary history of continental southeast asians: “early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Mol Biol Evol 2012, 29:3513-3527.
- [33]Chandrasekar A, Kumar S, Sreenath J, Sarkar BN, Urade BP, Mallick S, et al.: Updating phylogeny of mitochondrial DNA macrohaplogroup M in India: dispersal of modern human in South Asian corridor. PLoS ONE 2009, 4:e7447.
- [34]Hill C, Soares P, Mormina M, Macaulay V, Meehan W, Blackburn J, et al.: Phylogeography and ethnogenesis of aboriginal Southeast Asians. Mol Biol Evol 2006, 23:2480-2491.
- [35]Derenko M, Malyarchuk B, Grzybowski T, Denisova G, Rogalla U, Perkova M, et al.: Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in northern Asia. PLoS ONE 2010, 5:e15214.
- [36]Derenko M, Malyarchuk B, Denisova G, Perkova M, Rogalla U, Grzybowski T, et al.: Complete mitochondrial DNA analysis of eastern eurasian haplogroups rarely found in populations of northern asia and eastern europe. Plos One 2012, 7(2):e32179.
- [37]Tanaka M, Cabrera VM, González AM, Larruga JM, Takeyasu T, Fuku N, et al.: Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res 2004, 14:1832-1850.
- [38]Kong Q-P, Bandelt H-J, Sun C, Yao Y-G, Salas A, Achilli A, et al.: Updating the east asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 2006, 15:2076-2086.
- [39]Tassaneeyakul W, Mahatthanatrakul W, Niwatananun K, Na-Bangchang K, Tawalee A, Krikreangsak N, et al.: CYP2C19 genetic polymorphism in Thai, Burmese and Karen populations. Drug Metab Pharmacokinet 2006, 21:286-290.
- [40]Kuesap J, Hirayama K, Kikuchi M, Ruangweerayut R, Na-Bangchang K: Study on association between genetic polymorphisms of haem oxygenase-1, tumour necrosis factor, cadmium exposure and malaria pathogenicity and severity. Malaria J 2010, 9:260. BioMed Central Full Text
- [41]Moore E: Bronze and Iron Age sites in Upper Myanmar: Chindwin, Samon and Pyu. Spring: SOAS Bulletin of Burma Research, Vol.1 Nr.1; 2003. ISSN 1479-8484
- [42]Marshall HI: The karen people of burma: a study in anthropology and ethnology. Ohio State University Bulletin 1922, 26:1-329.
- [43]Kuroiwa Y, Verkuyten M: Narratives and the constitution of a common identity: the karen in burma. Identities-Glob Stud 2008, 15:391-412.
- [44]Gravers M: Waiting for a righteous ruler: the karen royal imaginary in thailand and burma. JSoutheast Asian studies 2012, 43:340-363.
- [45]Oota H, Settheetham-Ishida W, Tiwawech D, Ishida T, Stoneking M: Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat Genet 2001, 29:20-21.
- [46]Kongmaroeng C, Romphruk A, Ruangwerayut R, Paupairoj C, Leelayuwat C, Inoko H, et al.: HLA-B*15 subtypes in Burmese population by sequence-based typing. Tissue Antigens 2009, 74:164-167.
- [47]Soares P, Trejaut JA, Loo JH, Hill C, Mormina M, Lee CL, et al.: Climate change and postglacial human dispersals in southeast Asia. Mol Biol Evol 2008, 25:1209-1218.
- [48]Karafet TM, Hallmark B, Cox MP, Sudoyo H, Downey S, Lansing JS, et al.: Major east–west division underlies Y chromosome stratification across Indonesia. Mol Biol Evol 2010, 27:1833-1844.
- [49]Kuhner MK: LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 2006, 22:768-770.
- [50]Brandstätter A, Niederstätter H, Pavlic M, Grubwieser P, Parson W: Generating population data for the EMPOP database - an overview of the mtDNA sequencing and data evaluation processes considering 273 Austrian control region sequences as example. Forensic Sci Int 2007, 166:164-175.
- [51]Kloss-Brandstätter A, Schäfer G, Erhart G, Hüttenhofer A, Coassin S, Seifarth C, et al.: Somatic mutations throughout the entire mitochondrial genome Are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet 2010, 87:802-812.
- [52]Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N: Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999, 23:147.
- [53]Behar DM, Van OM, Rosset S, Metspalu M, Loogvali EL, Silva NM, et al.: A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am J Hum Genet 2012, 90:675-684.
- [54]Salas A, Coble M, Desmyter S, Grzybowski T, Gusmao L, Hohoff C, et al.: A cautionary note on switching mitochondrial DNA reference sequences in forensic genetics. Forensic Sci Int Genet 2012, 6:e182-e184.
- [55]Bandelt H-J, Kloss-Brandstätter A, Richards MB, Yao YG, Logan I: The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J Hum Genet 2013. doi:10.1038/jhg.2013.120
- [56]Weissensteiner H, Schönherr S, Specht G, Kronenberg F, Brandstätter A: eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies. BMC Bioinforma 2010, 11:122. BioMed Central Full Text
- [57]Kloss-Brandstätter A, Pacher D, Schönherr S, Weißensteiner H, Binna R, Specht G, et al.: HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 2011, 32:25-32.
- [58]Irwin JA, Ikramov A, Saunier J, Bodner M, Amory S, Röck AW, et al.: The mtDNA composition of Uzbekistan: a microcosm of Central Asian patterns. Int J Legal Med 2010, 124:195-204.
- [59]Lee HY, Yoo J-E, Park MJ, Chung U, Shin K-J: Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control. Int J Legal Med 2006, 120:5-14.
- [60]Excoffier L, Lischer HE: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:564-567.
- [61]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
- [62]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10:512-526.
- [63]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
- [64]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
- [65]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
- [66]Rambaut A, Drummond AJ: Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer webcite. 2007. Ref Type: Online Source
- [67]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
- [68]Beerli P, Felsenstein J: Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 1999, 152:763-773.
- [69]Beerli P, Felsenstein J: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 2001, 98:4563-4568.
- [70]Beerli P: Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 2006, 22:341-345.