期刊论文详细信息
BMC Genomics
Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum
Sylvain Raffaele1  Dominique Roby1  Claudine Balagué1  Koanna Guyon1 
[1] CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
关键词: Arabidopsis thaliana;    Pathogen;    Necrotrophic fungal;    Secretome;    Gene expression;    Sclerotinia sclerotiorum. Effectors;   
Others  :  1217295
DOI  :  10.1186/1471-2164-15-336
 received in 2014-02-03, accepted in 2014-04-27,  发布年份 2014
PDF
【 摘 要 】

Background

The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood.

Results

We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns.

Conclusions

These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.

【 授权许可】

   
2014 Guyon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706023332539.pdf 2388KB PDF download
Figure 7. 210KB Image download
Figure 6. 238KB Image download
Figure 5. 90KB Image download
Figure 4. 196KB Image download
Figure 3. 213KB Image download
Figure 2. 89KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD: Biology, yield loss and control of Sclerotinia stem rot of soybean. J Integrated Pest Manage 2012, 3(2):B1-B7.
  • [2]Bolton MD, Thomma BPHJ, Nelson BD: Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 2006, 7(1):1-16.
  • [3]Rafiqi M, Ellis JG, Ludowici VA, Hardham AR, Dodds PN: Challenges and progress towards understanding the role of effectors in plant–fungal interactions. Curr Opin Plant Biol 2012, 15(4):477-482.
  • [4]Raffaele S, Kamoun S: Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 2012, 10(6):417-430.
  • [5]Lorang JM, Sweat TA, Wolpert TJ: Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci 2007, 104(37):14861.
  • [6]Lorang J, Kidarsa T, Bradford C, Gilbert B, Curtis M, Tzeng SC, Maier C, Wolpert T: Tricking the Guard: Exploiting Plant Defense for Disease Susceptibility. Sci Signal 2012, 338(6107):659.
  • [7]Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB: Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 2011, 7(6):e1002107.
  • [8]Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D: A Secretory Protein of Necrotrophic Fungus Sclerotinia sclerotiorum That Suppresses Host Resistance. PLoS One 2013, 8(1):e53901.
  • [9]Noda J, Brito N, González C: The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC plant Biol 2010, 10(1):38. BioMed Central Full Text
  • [10]Lowe RG, Howlett BJ: Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi. PLoS Pathog 2012, 8(3):e1002515.
  • [11]Saunders DGO, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S: Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS One 2012, 7(1):e29847.
  • [12]Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S: Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 2011, 7(8):e1002230.
  • [13]Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU, HU Nurnberger T, Oecking C: A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 2009, 106(25):10359-10364.
  • [14]Frías M, González C, Brito N: BcSpl1, a cerato‒platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 2011, 192:483-495.
  • [15]Koharudin LM, Viscomi AR, Jee J-G, Ottonello S, Gronenborn AM: The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity. Structure 2008, 16(4):570-584.
  • [16]Stergiopoulos I, Kourmpetis YA, Slot JC, Bakker FT, De Wit PJ, Rokas A: In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Mol Biol Evol 2012, 29(11):3371-3384.
  • [17]Van den Burg HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E, Boeren S, de Wit PJGM, Joosten MHAJ, Vervoort J: Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J Biol Chem 2003, 278(30):27340-27346.
  • [18]de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BP: Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010, 329(5994):953-955.
  • [19]Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BP, Rudd JJ: Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol 2011, 156(2):756-769.
  • [20]Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP: Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell Online 2012, 24(1):322-335.
  • [21]Rooney HC, van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 2005, 308(5729):1783-1786.
  • [22]Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G: Compatibility in the Ustilago maydis –maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog 2013, 9(2):e1003177.
  • [23]Pretsch K, Kemen A, Kemen E, Geiger M, Mendgen K, Voegele R: The rust transferred proteins—a new family of effector proteins exhibiting protease inhibitor function. Mol Plant Pathol 2013, 14(1):96-107.
  • [24]Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG: Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 2006, 18(1):243-256.
  • [25]Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B: A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 2000, 12(11):2019-2032.
  • [26]Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R: Metabolic priming by a secreted fungal effector. Nature 2011, 478(7369):395-398.
  • [27]Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G: The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 2012, 8(5):e1002684.
  • [28]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17(1):32-43.
  • [29]Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S: Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 2007, 19(8):2349-2369.
  • [30]Hacquard S, Joly DL, Lin Y-C, Tisserant E, Feau N, Delaruelle C, Legué V, Kohler A, Tanguay P, Petre B, Frey P, Van de Peer Y, Rouzé P, Martin F, Hamelin RC, Duplessis S: A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Mol Plant-Microbe Interact 2012, 25(3):279-293.
  • [31]Sun G, Yang Z, Kosch T, Summers K, Huang J: Evidence for acquisition of virulence effectors in pathogenic chytrids. BMC Evol Biol 2011, 11(1):195. BioMed Central Full Text
  • [32]Stergiopoulos I, De Kock MJD, Lindhout P, De Wit PJGM: Allelic variation in the effector genes of the tomato pathogen Cladosporium fulvum reveals different modes of adaptive evolution. Mol Plant-Microbe Interact 2007, 20(10):1271-1283.
  • [33]Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, Lawrence GJ, Burdon JJ: Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol Biol Evol 2009, 26(11):2499-2513.
  • [34]Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, Dubcovsky J, Saunders DG, Uauy C: Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 2013, 14(1):270. BioMed Central Full Text
  • [35]Aguileta G, Lengelle J, Chiapello H, Giraud T, Viaud M, Fournier E, Rodolphe F, Marthey S, Ducasse A, Gendrault A: Genes under positive selection in a model plant pathogenic fungus, Botrytis. Infect Genet Evol 2012, 12(5):987-996.
  • [36]Martinez JP, Oesch NW, Ciuffetti LM: Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 2004, 17(5):467-474.
  • [37]Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B: Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 Genes Genomes Genetics 2013, 3(1):41-63.
  • [38]Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RHY, Zody MC, Kunjeti SG, Donofrio NM: Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 2010, 330(6010):1540.
  • [39]Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S: Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2011, 2:202.
  • [40]Desveaux D, Singer AU, Dangl JL: Type III effector proteins: doppelgangers of bacterial virulence. Curr Opin Plant Biol 2006, 9(4):376-382.
  • [41]Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PR: A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 2007, 450(7166):115-118.
  • [42]Godfrey D, Böhlenius H, Pedersen C, Zhang Z, Emmersen J, Thordal-Christensen H: Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 2010, 11(1):317. BioMed Central Full Text
  • [43]Choo KH, Tan TW, Ranganathan S: SPdb–a signal peptide database. BMC Bioinforma 2005, 6(1):249. BioMed Central Full Text
  • [44]Dallal Bashi Z, Hegedus DD, Buchwaldt L, Rimmer SR, Borhan MH: Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene‒inducing peptides (NEPs). Mol Plant Pathol 2010, 11(1):43-53.
  • [45]Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W: Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 2012, 8(4):e1002643.
  • [46]Matei E, Louis JM, Jee J, Gronenborn AM: NMR solution structure of a cyanovirin homolog from wheat head blight fungus. Proteins Structure Function Bioinformatics 2011, 79(5):1538-1549.
  • [47]Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP: Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 2006, 273(18):4346-4359.
  • [48]Jeong JS, Mitchell TK, Dean RA: The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol Lett 2007, 273(2):157-165.
  • [49]Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RAL, Kamoun S: Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci 2009, 106(5):1654.
  • [50]McCann HC, Nahal H, Thakur S, Guttman DS: Identification of innate immunity elicitors using molecular signatures of natural selection. Proc Natl Acad Sci 2012, 109(11):4215-4220.
  • [51]Pedersen C, van Themaat EVL, McGuffin LJ, Abbott JC, Burgis TA, Barton G, Bindschedler LV, Lu X, Maekawa T, Weßling R, Cramer R, Thordal-Christensen H, Panstruga R, Spanu PD: Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 2012, 13(1):694. BioMed Central Full Text
  • [52]Sella L, Gazzetti K, Faoro F, Odorizzi S, D'Ovidio R, Schäfer W, Favaron F: A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol Biochem 2013, 64:1-10.
  • [53]Sansen S, De Ranter CJ, Gebruers K, Brijs K, Courtin CM, Delcour JA, Rabijns A: Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I. J Biol Chem 2004, 279(34):36022-36028.
  • [54]Yoshizawa T, Shimizu T, Hirano H, Sato M, Hashimoto H: Structural basis for inhibition of xyloglucan-specific endo-β-1, 4-glucanase (XEG) by XEG-protein inhibitor. J Biol Chem 2012, 287(22):18710-18716.
  • [55]van der Does HC, Rep M: Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol Plant Microbe Interact 2007, 20(10):1175-1182.
  • [56]Feil SC, Lawrence S, Mulhern TD, Holien JK, Hotze EM, Farrand S, Tweten RK, Parker MW: Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. Structure 2012, 20(2):248-258.
  • [57]Willis C, Wang CK, Osman A, Simon A, Pickering D, Mulvenna J, Riboldi-Tunicliffe A, Jones MK, Loukas A, Hofmann A: Insights into the membrane interactions of the saposin-like proteins Na-SLP-1 and Ac-SLP-1 from human and dog hookworm. PLoS One 2011, 6(10):e25369.
  • [58]Liberman N, Dym O, Unger T, Albeck S, Peleg Y, Jacobovitch Y, Branzburg A, Eisenstein M, Marash L, Kimchi A: The crystal structure of the C-terminal DAP5/p97 domain sheds light on the molecular basis for its processing by caspase cleavage. J Mol Biol 2008, 383(3):539-548.
  • [59]Lee WS, Rudd JJ, Hammond Kosack KE, Kanyuka K: Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant-Microbe Interact 2013, 27(3):236-243.
  • [60]Brown NA, Antoniw J, Hammond-Kosack KE: The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 2012, 7(4):e33731.
  • [61]Hegedus DD, Rimmer SR: Sclerotinia sclerotiorum: When “to be or not to be” a pathogen? FEMS Microbiol Lett 2005, 251(2):177-184.
  • [62]Pollet A, Sansen S, Raedschelders G, Gebruers K, Rabijns A, Delcour JA, Courtin CM: Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. FEBS J 2009, 276(14):3916-3927.
  • [63]Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D: Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell Online 2005, 17(3):849-858.
  • [64]Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, van Themaat EVL: Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci 2013, 110(24):E2219-E2228.
  • [65]Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Döhlemann S, von Wirén N, Parniske M, Zuccaro A: Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci 2013, 110(34):13965-13970.
  • [66]Nielsen H, Krogh A: Prediction of signal peptides and signal anchors by a hidden Markov model. 1998, 122-130. [Ismb]
  • [67]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [68]Sonnhammer EL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. proc Int Conf Intell Syst Mol Biol 1998, 6:175-182.
  • [69]Fankhauser N, Mäser P: Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 2005, 21(9):1846-1852.
  • [70]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [71]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40(D1):D290-D301.
  • [72]Ba ANN, Pogoutse A, Provart N, Moses AM: NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinforma 2009, 10(1):202. BioMed Central Full Text
  • [73]Östlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer EL: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 2010, 38(suppl 1):D196-D203.
  • [74]Wang D, Zhang Y, Zhang Z, Zhu J, Yu J: KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics Bioinformatics 2010, 8(1):77-80.
  • [75]Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T: Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 2007, 35(suppl 2):W506-W511.
  • [76]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinforma 2008, 9(1):40. BioMed Central Full Text
  • [77]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25(13):1605-1612.
  • [78]Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak IL, Shabalov I: MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 2014, 42(D1):D699-D704.
  • [79]Felsenstein J: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 1989, 5:16-166.
  • [80]Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002, 30(7):1575-1584.
  • [81]Saunders DGO, Win J, Kamoun S, Raffaele S: Two-Dimensional data binning for the analysis of genome architecture in filamentous plant pathogens and other eukaryote. In Methods in Molecular Biology. Volume 1127. Secon edition. Edited by Birch PRJ, Jones JT, Bos JIB. New Yor: Springer Science + Business Media; 2014.
  文献评价指标  
  下载次数:47次 浏览次数:7次