| BMC Genomics | |
| Classification of fungal and bacterial lytic polysaccharide monooxygenases | |
| Lene Lange1  Peter K Busk1  | |
| [1] Department of Chemistry and Bioscience, Aalborg University and Barentzymes A/S, A.C. Meyers Vænge 15, 2450, Copenhagen, SV, Denmark | |
| 关键词: Genomic annotation; Peptide pattern recognition; Sequence analysis; Subfamilies; Lytic polysaccharide monooxygenases; | |
| Others : 1204009 DOI : 10.1186/s12864-015-1601-6 |
|
| received in 2014-11-04, accepted in 2015-04-29, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Lytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies.
Results
The results showed that the lytic polysaccharide monooxygenases have two conserved regions identified by conserved peptides specific for each AA family. The peptides were used for in silico PCR discovery of the lytic polysaccharide monooxygenases in 79 fungal and 95 bacterial genomes. The bacterial genomes encoded 0 – 7 AA10s (average 0.6). No AA9 or AA11 were found in the bacteria. The fungal genomes encoded 0 – 40 AA9s (average 7) and 0 – 15 AA11s (average 2) and two of the fungi possessed a gene encoding a putative AA10. The AA9s were mainly found in plant cell wall-degrading asco- and basidiomycetes in agreement with the described role of AA9 enzymes. In contrast, the AA11 proteins were found in 36 of the 39 ascomycetes and in only two of the 32 basidiomycetes and their abundance did not correlate to the degradation of cellulose and hemicellulose.
Conclusions
These results provides an overview of the sequence characteristics and occurrence of the divergent AA9, AA10 and AA11 families and pave the way for systematic investigations of the of lytic polysaccharide monooxygenases and for structure-function studies of these enzymes.
【 授权许可】
2015 Busk and Lange; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150523040429744.pdf | 1585KB | ||
| Figure 7. | 26KB | Image | |
| Figure 6. | 22KB | Image | |
| Figure 5. | 134KB | Image | |
| Figure 4. | 67KB | Image | |
| Figure 3. | 6KB | Image | |
| Figure 2. | 13KB | Image | |
| Figure 1. | 16KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R et al.. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A. 2014; 111:6287-92.
- [2]Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A et al.. Cleavage of cellulose by a CBM33 protein. Protein Sci. 2011; 20:1479-83.
- [3]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C, Brown K et al.. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010; 49:3305-16.
- [4]Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol. 2011; 77:7007-15.
- [5]Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol. 2011; 6:1399-406.
- [6]Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M et al.. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010; 330:219-22.
- [7]Beeson WT, Phillips CM, Cate JH, Marletta MA. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc. 2011; 134:890-2.
- [8]Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS et al.. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A. 2011; 108:15079-84.
- [9]Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K et al.. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One. 2011; 6:e27807.
- [10]Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R et al.. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014; 289:2632-42.
- [11]Aachmann FL, Sørlie M, Skjåk-Bræk G, Eijsink VGH, Vaaje-Kolstad G. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci U S A. 2012; 109:18779-84.
- [12]Li X, Beeson WT, Phillips CM, Marletta MA, Cate JHD. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure. 2012; 20:1051-61.
- [13]Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM et al.. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem. 2013; 288:12828-39.
- [14]Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013; 6:41. BioMed Central Full Text
- [15]Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Penttilä M, Tjerneld F. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem. 2001; 268:6498-507.
- [16]Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012; 5:45. BioMed Central Full Text
- [17]Leggio LL, Welner D, De Maria L. A structural overview of GH61 proteins - fungal cellulose degrading polysaccharide monooxygenases. Comput Struct Biotechnol J. 2012; 2:e201209019.
- [18]Hori C, Igarashi K, Katayama A, Samejima M. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett. 2011; 321:14-23.
- [19]Ray A, Saykhedkar S, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ. Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum. Appl Microbiol Biotechnol. 2012; 93:2075-89.
- [20]Yakovlev I, Vaaje-Kolstad G, Hietala AM, Stefańczyk E, Solheim H, Fossdal CG. Substrate-specific transcription of the enigmatic GH61 family of the pathogenic white-rot fungus Heterobasidion irregulare during growth on lignocellulose. Appl Microbiol Biotechnol. 2012; 95:979-90.
- [21]Forsberg Z, Røhr AK, Mekasha S, Andersson KK, Eijsink VGH, Vaaje-Kolstad G et al.. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry. 2014; 53:1647-56.
- [22]Forsberg Z, Mackenzie AK, Sørlie M, Røhr AK, Helland R, Arvai AS et al.. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014; 111:8446-51.
- [23]Hemsworth GR, Henrissat B, Davies GJ, Walton PH. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol. 2014; 10:122-6.
- [24]Busk PK, Lange L. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Appl Environ Microbiol. 2013; 79:3380-91.
- [25]Busk PK, Lange M, Pilgaard B, Lange L. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature. PLoS One. 2014; 9:e114138.
- [26]Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel. 2006; 19:555-62.
- [27]Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2012; 12:186. BioMed Central Full Text
- [28]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009; 37(Database issue):D233-8.
- [29]Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014; 42(Database issue):D490-5.
- [30]Busk PK, Lange L. A Novel Method of Providing a Library of N-Mers or Biopolymers. 2012. [WO2012101151].
- [31]Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP et al.. The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc. 2013; 135:6069-77.
- [32]Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B et al.. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012; 336:1715-9.
- [33]Kuhad RC, Kuhar S, Kapoor M, Sharma KK, Singh A. Lignocellulolytic microorganisms, their enzymes and possible biotechnologies based on lignocellulolytic microorganisms and their enzymes. Future Prospects. I. K. International Pvt Ltd, In Lignocellulose Biotechnology; 2007.
- [34]Moore-Landecker E. Fungi as saprophytes. In Fundamentals of the fungi. Prentice-Hall; New Jersey, USA. 1972. p. 291–325.
- [35]Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA. 2014;111:9923-9928.
- [36]Ainsworth GC, Bisby GR, Hawksworth DL. Ainsworth & Bisby’s dictionary of the fungi. 8th revised edition edition. CABI Publishing, Wallingford, Oxon, UK; 1995.
- [37]Glass NL, Schmoll M, Cate JHD, Coradetti S. Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol. 2013; 67:477-98.
- [38]Baldo A, Monod M, Mathy A, Cambier L, Bagut ET, Defaweux V et al.. Mechanisms of skin adherence and invasion by dermatophytes. Mycoses. 2012; 55:218-23.
- [39]Ng KP, Ngeow YF, Yew SM, Hassan H, Soo-Hoo TS, Na SL et al.. Draft genome sequence of Daldinia eschscholzii isolated from blood culture. Eukaryot Cell. 2012; 11:703-4.
- [40]Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A et al.. Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet. 2012; 8:e1002558.
- [41]Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE et al.. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010; 28:957-63.
- [42]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
- [43]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C et al.. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011; 39(Database issue):D225-9.
- [44]Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin J-G et al.. Cello-oligosaccharide oxidation reveals differences between Two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol. 2013; 79:488-96.
- [45]Vu VV, Beeson WT, Phillips CM, Cate JHD, Marletta MA. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc. 2014; 136:562-5.
- [46]Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G et al.. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol. 2012; 416:239-54.
- [47]Gudmundsson M, Kim S, Wu M, Ishida T, Momeni MH, Vaaje-Kolstad G et al.. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J Biol Chem. 2014; 289:18782-92.
- [48]Monod M. Secreted proteases from dermatophytes. Mycopathologia. 2008; 166:285-94.
- [49]Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM et al.. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio. 2012; 3:e00259-00212.
- [50]Zaugg C, Monod M, Weber J, Harshman K, Pradervand S, Thomas J et al.. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell. 2009; 8:241-50.
- [51]Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D et al.. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science. 2005; 307:1321-4.
- [52]Baron O, Cassaing S, Percodani J, Berry A, Linas M-D, Fabre R et al.. Nucleotide sequencing for diagnosis of sinusal infection by Schizophyllum commune, an uncommon pathogenic fungus. J Clin Microbiol. 2006; 44:3042-3.
- [53]Tanaka H, Takizawa K, Baba O, Maeda T, Fukushima K, Shinya K et al.. Basidiomycosis: Schizophyllum commune osteomyelitis in a dog. J Vet Med Sci. 2008; 70:1257-9.
- [54]Zugmaier W, Bauer R, Oberwinkler F. Mycoparasitism of some tremella species. Mycologia. 1994; 86:49-56.
- [55]Fitzpatrick DA. Horizontal gene transfer in fungi. FEMS Microbiol Lett. 2012; 329:1-8.
- [56]Jumpponen A, Jones KL. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol. 2010; 186:496-513.
- [57]Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010; 12:2885-93.
- [58]Spring J. Major transitions in evolution by genome fusions: from prokaryotes to eukaryotes, metazoans, bilaterians and vertebrates. J Struct Funct Genomics. 2003; 3:19-25.
- [59]Richardson M. The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 2009; 15 Suppl 5:2-9.
- [60]Busk PK, Lange L. Cellulolytic potential of thermophilic species from four fungal orders. AMB Express. 2013; 3:47. BioMed Central Full Text
- [61]Busk PK. The meaning of life - On cactus finches, evolution and chaos. 1st ed. Copenhagen, Denmark, Saxo; 2013.
- [62]Van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011; 91:1477-92.
- [63]Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009; 27:185-94.
- [64]Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH. Cn3D: sequence and structure views for Entrez. Trends Biochem Sci. 2000; 25:300-2.
PDF