| BMC Systems Biology | |
| Identifying aging-related genes in mouse hippocampus using gateway nodes | |
| Hesham H Ali1  Kathryn M Dempsey1  | |
| [1] College of Information Science and Technology, University of Nebraska at Omaha, Omaha, USA | |
| 关键词: Hippocampus; Aging-related genes; Gateway node; Klotho; Correlation networks; | |
| Others : 866356 DOI : 10.1186/1752-0509-8-62 |
|
| received in 2013-03-22, accepted in 2014-05-12, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
High-throughput studies continue to produce volumes of metadata representing valuable sources of information to better guide biological research. With a stronger focus on data generation, analysis models that can readily identify actual signals have not received the same level of attention. This is due in part to high levels of noise and data heterogeneity, along with a lack of sophisticated algorithms for mining useful information. Networks have emerged as a powerful tool for modeling high-throughput data because they are capable of representing not only individual biological elements but also different types of relationships en masse. Moreover, well-established graph theoretic methodology can be applied to network models to increase efficiency and speed of analysis. In this project, we propose a network model that examines temporal data from mouse hippocampus at the transcriptional level via correlation of gene expression. Using this model, we formally define the concept of “gateway” nodes, loosely defined as nodes representing genes co-expressed in multiple states. We show that the proposed network model allows us to identify target genes implicated in hippocampal aging-related processes.
Results
By mining gateway genes related to hippocampal aging from networks made from gene expression in young and middle-aged mice, we provide a proof-of-concept of existence and importance of gateway nodes. Additionally, these results highlight how network analysis can act as a supplement to traditional statistical analysis of differentially expressed genes. Finally, we use the gateway nodes identified by our method as well as functional databases and literature to propose new targets for study of aging in the mouse hippocampus.
Conclusions
This research highlights the need for methods of temporal comparison using network models and provides a systems biology approach to extract information from correlation networks of gene expression. Our results identify a number of genes previously implicated in the aging mouse hippocampus related to synaptic plasticity and apoptosis. Additionally, this model identifies a novel set of aging genes previously uncharacterized in the hippocampus. This research can be viewed as a first-step for identifying the processes behind comparative experiments in aging that is applicable to any type of temporal multi-state network.
【 授权许可】
2014 Dempsey and Ali; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140727071258177.pdf | 3337KB | ||
| 63KB | Image | ||
| 47KB | Image | ||
| 52KB | Image | ||
| 98KB | Image |
【 图 表 】
【 参考文献 】
- [1]Scholz MB, Lo CC, Chain PS: Next generation sequencing and bioinformatic bottlenecks: The current state of metagenomic data analysis. Curr Opin Biotechnol 2012, 23(1):9-15.
- [2]Arbesman S: Stop hyping big data and start paying attention to ‘Long data’. http://www.wired.com/opinion/2013/01/forget-big-data-think-long-data/ webcite. Updated 2013. Accessed 2/19, 2013.
- [3]Alexeyenko A, Lee W, Pernemalm M, Guegen J, Dessen P, Lazar V, Lehtiö J, Pawitan Y: Network enrichment analysis: Extension of gene-set enrichment analysis to gene networks. BMC Bioinform 2012, 13:226-2105. 13-226 BioMed Central Full Text
- [4]Barabasi AL, Oltvai ZN: Network biology: Understanding the cell's functional organization. Nat Rev Genet 2004, 5(2):101-113.
- [5]Kell DB: Metabolomics and systems biology: Making sense of the soup. Curr Opin Microbiol 2004, 7(3):296-307.
- [6]Albert R: Scale-free networks in cell biology. J Cell Sci 2005, 118(Pt 21):4947-4957.
- [7]Dempsey K, Ali H: On the discovery of cellular subsystems in correlation networks using centrality measures. Curr Bioinformatics 2013, 8:305-314.
- [8]Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-42.
- [9]Carter SL, Brechbuhler CM, Griffin M, Bond AT: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20(14):2242-2250.
- [10]Mutwil M, Usadel B, Schutte M, Loraine A, Ebenhoh O, Persson S: Assembly of an interactive correlation network for the arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 2010, 152(1):29-43.
- [11]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:Article17.
- [12]Watson-Haigh NS, Kadarmideen HN, Reverter A: PCIT: An R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics 2010, 26(3):411-413.
- [13]Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2. BioMed Central Full Text
- [14]Moschopoulos CN, Pavlopoulos GA, Iacucci E, Aerts J, Likothanassis S, Schneider R, Kossida S: Which clustering algorithm is better for predicting protein complexes? BMC Res Notes 2011, 4:549. BioMed Central Full Text
- [15]Li X, Wu M, Kwoh CK, Ng SK: Computational approaches for detecting protein complexes from protein interaction networks: A survey. BMC Genomics 2010, 11(Suppl 1):S3. BioMed Central Full Text
- [16]Xu X, Xie Q, McClung CR: Robust circadian rhythms of gene expression in brassica rapa tissue culture. Plant Physiol 2010, 153(2):841-850.
- [17]Dai Z, Dai X, Xiang Q, Feng J: Robustness of transcriptional regulatory program influences gene expression variability. BMC Genomics 2009, 10:573. BioMed Central Full Text
- [18]Kitano H: Biological robustness. Nat Rev Genet 2004, 5(11):826-837.
- [19]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: Tool for the unification of biology. the gene ontology consortium. Nat Genet 2000, 25(1):25-29.
- [20]Dempsey K, Thapa I, Bastola D, Ali H: Functional identification in correlation networks using gene ontology edge annotation. Int J Comput Biol Drug Des 2012, 5(3–4):222-244.
- [21]Mirzarezaee M, Araabi BN, Sadeghi M: Features analysis for identification of date and party hubs in protein interaction network of saccharomyces cerevisiae. BMC Syst Biol 2010, 4:172. BioMed Central Full Text
- [22]Rhrissorrakrai K, Gunsalus KC: MINE: Module identification in networks. BMC Bioinformatics 2011, 12:192. BioMed Central Full Text
- [23]Benson M, Breitling R: Network theory to understand microarray studies of complex diseases. Curr Mol Med 2006, 6(6):695-701.
- [24]Ma X, Tarone AM, Li W: Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One 2008, 3(4):e1922.
- [25]Dempsey K, Duraisamy K, Ali H, Bhowmick S: A parallel graph sampling algorithm for analyzing gene correlation networks. Proc Int Conf Comput Sci (ICCS) 2011, 4:136-145.
- [26]Reverter A, Chan EK: Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinform 2008, 24(21):2491-2497.
- [27]Fukushima A, Kusano M, Redestig H, Arita M, Saito K: Metabolomic correlation-network modules in arabidopsis based on a graph-clustering approach. BMC Syst Biol 2011, 5:1. BioMed Central Full Text
- [28]Song L, Langfelder P, Horvath S: Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinformatics 2012, 13(1):328. BioMed Central Full Text
- [29]Horvath S, Dong J: Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 2008, 4(8):e1000117.
- [30]Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A: False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005, 21(13):3017-3024.
- [31]Bergmann S, Ihmels J, Barkai N: Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2004, 2(1):E9.
- [32]Opgen-Rhein R, Strimmer K: From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 2007, 1:37. BioMed Central Full Text
- [33]Shah NH, Tenenbaum JD: The coming age of data-driven medicine: Translational bioinformatics’ next frontier. J Am Med Inform Assoc 2012, 19(1e):e2-e4.
- [34]Horvath S, Dong J: Geometric interpretation of correlation networks using singular value decomposition. PLOS Comp Biol 2011, 4(8):123-153.
- [35]Wu Y, Zhang AQ, Wai MS, Lai HW, Wu SX, Yew DT: Changes of apoptosis-related proteins in hippocampus of SAM mouse in development and aging. Neurobiol Aging 2006, 27(5):782.e1-782.e10.
- [36]Shiozaki M, Yoshimura K, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T: Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience 2008, 152(4):924-941.
- [37]Llorens-Martin M, Torres-Aleman I, Trejo JL: Mechanisms mediating brain plasticity: IGF1 and adult hippocampal neurogenesis. Neuroscientist 2009, 15(2):134-148.
- [38]Yan H, Mitschelen M, Bixler GV, Brucklacher RM, Farley JA, Han S, Freeman WM, Sonntag WE: Circulating IGF1 regulates hippocampal IGF1 levels and brain gene expression during adolescence. J Endocrinol 2011, 211(1):27-37.
- [39]Hami J, Sadr-Nabavi A, Sankian M, Balali-Mood M, Haghir H: The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Struct Funct 2013, 218(1):73-84.
- [40]Laurino L, Wang XX, de la Houssaye BA, Sosa L, Dupraz S, Cáceres A, Pfenninger KH, Quiroga S: PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J Cell Sci 2005, 118(Pt 16):3653-3662.
- [41]Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F: Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granuleand striatal parvalb umin-containing neurons. Neuron 1995, 14(4):717-730.
- [42]Sun LY, Al-Regaiey K, Masternak MM, Wang J, Bartke A: Local expression of GH and IGF-1 in the hippocampus of GH-deficient long-lived mice. Neurobiol Aging 2005, 26(6):929-937.
- [43]Puglielli L: Aging of the brain, neurotrophin signaling, and Alzheimer’s disease: is IGF1-R the common culprit? Neurobiol Aging 2008, 29(6):795-811.
- [44]Perez E, Barrachina M, Rodriguez A, Torrejón-Escribano B, Boada M, Hernández I, Sánchez M, Ferrer I: Aquaporin expression in the cerebral cortex is increased at early stages of alzheimer disease. Brain Res 2007, 1128(1):164-174.
- [45]Xu GY, Wang F, Jiang X, Tao J: Aquaporin 1, a potential therapeutic target for migraine with aura. Mol Pain 2010, 6:68. BioMed Central Full Text
- [46]Vlachos P, Nyman U, Hajji N, Joseph B: The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ 2007, 14(8):1497-1507.
- [47]Samuelsson MK, Pazirandeh A, Okret S: A pro-apoptotic effect of the CDK inhibitor p57(Kip2) on staurosporine-induced apoptosis in HeLa cells. Biochem Biophys Res Commun 2002, 296(3):702-709.
- [48]Wang Y, Sun Z: Current understanding of klotho. Ageing Res Rev 2009, 8(1):43-51.
- [49]Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M: Suppression of aging in mice by the hormone klotho. Science 2005, 309(5742):1829-1833.
- [50]de Oliveira RM: Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett 2006, 580(24):5753-5758.
- [51]Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390(6655):45-51.
- [52]Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, Nabeshima Y, Nabeshima T: Cognition impairment in the genetic model of aging klotho gene mutant mice: A role of oxidative stress. FASEB J 2003, 17(1):50-52.
- [53]Razzaque MS: FGF23-mediated regulation of systemic phosphate homeostasis: Is klotho an essential player? Am J Physiol Renal Physiol 2009, 296(3):F470-F476.
- [54]Woo JM, Park SJ, Kang HI, Kim BG, Shim SB, Jee SW, Lee SH, Sin JS, Bae CJ, Jang MK, Cho C, Hwang DY, Kim CK: Characterization of changes in global gene expression in the brain of neuron-specific enolase/human Tau23 transgenic mice in response to overexpression of tau protein. Int J Mol Med 2010, 25(5):667-675.
- [55]Sennvik K, Boekhoorn K, Lasrado R, Terwel D, Verhaeghe S, Korr H, Schmitz C, Tomiyama T, Mori H, Krugers H, Joels M, Ramakers GJ, Lucassen PJ, Van Leuven F: Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. FASEB J 2007, 21(9):2149-2161.
- [56]Fasulo L, Ugolini G, Cattaneo A: Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutation N279K. J Alzheimers Dis 2005, 7(1):3-13.
- [57]Wati H, Kawarabayashi T, Matsubara E, Kasai A, Hirasawa T, Kubota T, Harigaya Y, Shoji M, Maeda S: Transthyretin accelerates vascular abeta deposition in a mouse model of alzheimer's disease. Brain Pathol 2009, 19(1):48-57.
- [58]Perrone-Bizzozero NI, Tanner DC, Mounce J, Bolognani F: Increased expression of axogenesis-related genes and mossy fibre length in dentate granule cells from adult HuD overexpressor mice. ASN Neuro 2011, 3(5):259-270.
- [59]Chen Q, Yu L, Yang L, Zhou B: Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquat Toxicol 2012, 110–111:141-148.
- [60]Kitanovic A, Wolfl S: Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in saccharomyces cerevisiae. Mutat Res 2006, 594(1–2):135-147.
- [61]Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA, Müller R, Meese E, Lenhof HP: GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res 2007, 35(Web Server issue):W186-W192.
- [62]Verbitsky M, Yonan AL, Malleret G, Kandel ER, Gilliam TC, Pavlidis P: Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Mem 2004, 11(3):253-260.
- [63]Ewens WJ, Grant GR: Statistical Methods in Bioinformatics. Second edition. New York, NY: Springer; 2005:597.
- [64]Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T: A travel guide to Cytoscape plugins. Nat Methods 2012, 9(11)):1069-1076.
- [65]Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Group MGD: The mouse genome database (MGD): Mouse biology and model systems. Nucleic Acids Res 2008, 36(Database issue):D724-D728.
PDF