期刊论文详细信息
BMC Systems Biology
Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction
Sanjay Shete1  Sai-Ching J. Yeung2  Jian Wang1  Christine Yuan2  Cielito C. Reyes-Gibby2 
[1]Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
[2]Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
关键词: Cancer;    Inflammation;    Genes;    Addiction;    Alcohol;    Smoking;    Opioid;    Pain;   
Others  :  1233564
DOI  :  10.1186/s12918-015-0167-x
 received in 2014-09-30, accepted in 2015-05-12,  发布年份 2015
PDF
【 摘 要 】

Background

Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction.

Results

Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling.

Conlusions

Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.

【 授权许可】

   
2015 Reyes-Gibby et al.

【 预 览 】
附件列表
Files Size Format View
20151122021653654.pdf 1765KB PDF download
Fig. 5. 119KB Image download
Fig. 4. 35KB Image download
Fig. 3. 84KB Image download
Fig. 2. 40KB Image download
Fig. 1. 53KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Arai YC, Matsubara T, Shimo K, Suetomi K, Nishihara M, Ushida T, et al.: Low-dose gabapentin as useful adjuvant to opioids for neuropathic cancer pain when combined with low-dose imipramine. J Anesth 2010, 24(3):407-410.
  • [2]Smith EM, Pang H, Cirrincione C, Fleishman S, Paskett ED, Ahles T, et al.: Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 2013, 309(13):1359-1367.
  • [3]Koyyalagunta D, Burton AW, Toro MP, Driver L, Novy DM: Opioid abuse in cancer pain: report of two cases and presentation of an algorithm of multidisciplinary care. Pain Physician 2011, 14(4):E361-371.
  • [4]Rauenzahn S, Del Fabbro E: Opioid management of pain: the impact of the prescription opioid abuse epidemic. Curr Opin Support Palliat Care 2014, 8(3):273-278.
  • [5]Sweitzer MM, Donny EC, Hariri AR: Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction. Drug Alcohol Depend 2012, 123(Suppl 1):S59-71.
  • [6]Granata R, Bossi P, Bertulli R, Saita L: Rapid-onset opioids for the treatment of breakthrough cancer pain: two cases of drug abuse. Pain Med 2014, 15(5):758-761.
  • [7]Koyyalagunta D, Bruera E, Aigner C, Nusrat H, Driver L, Novy D: Risk stratification of opioid misuse among patients with cancer pain using the SOAPP-SF. Pain Med 2013, 14(5):667-675.
  • [8]Erlich PM, Hoffman SN, Rukstalis M, Han JJ, Chu X, Linda Kao WH, et al.: Nicotinic acetylcholine receptor genes on chromosome 15q25.1 are associated with nicotine and opioid dependence severity. Hum Genet 2010, 128(5):491-499.
  • [9]Hojsted J, Ekholm O, Kurita GP, Juel K, Sjogren P: Addictive behaviors related to opioid use for chronic pain: a population-based study. Pain 2013, 154(12):2677-2683.
  • [10]Log T, Hartz I, Handal M, Tverdal A, Furu K, Skurtveit S: The association between smoking and subsequent repeated use of prescribed opioids among adolescents and young adults–a population-based cohort study. Pharmacoepidemiol Drug Saf 2011, 20(1):90-98.
  • [11]Skurtveit S, Furu K, Selmer R, Handal M, Tverdal A: Nicotine dependence predicts repeated use of prescribed opioids. Prospective population-based cohort study. Ann Epidemiol 2010, 20(12):890-897.
  • [12]Readhead B, Dudley J: Translational Bioinformatics Approaches to Drug Development. Adv Wound Care 2013, 2(9):470-489.
  • [13]Atreya RV, Sun J, Zhao Z: Exploring drug-target interaction networks of illicit drugs. BMC Genomics 2013, 14(Suppl 4):S1.
  • [14]Han S, Yang BZ, Kranzler HR, Liu X, Zhao H, Farrer LA, et al.: Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. Am J Hum Genet 2013, 93(6):1027-1034.
  • [15]Li CY, Mao X, Wei L: Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 2008, 4(1):e2.
  • [16]Grossman AD, Cohen MJ, Manley GT, Butte AJ: Altering physiological networks using drugs: steps towards personalized physiology. BMC Med Genomics 2013, 6(Suppl 2):S7.
  • [17]Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ: The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010, 33(6):267-276.
  • [18]“FOSB”. Wikipedia: The free encyclopedia [http://en.wikipedia.org/wiki/FOSB#Delta_FosB]
  • [19]Ingenuity Pathway Analysis software [http://www.ingenuity.com/]
  • [20]IPA Network Generation Algorithm [http://www.ingenuity.com/wp-content/themes/ingenuitytheme/pdf/ipa/IPA-netgen-algorithm-whitepaper.pdf]
  • [21]Muurling T, Stankovic KM: Metabolomic and network analysis of pharmacotherapies for sensorineural hearing loss. Otol Neurotol 2014, 35(1):1-6.
  • [22]Beer B, Erb R, Pavlic M, Ulmer H, Giacomuzzi S, Riemer Y, et al.: Association of polymorphisms in pharmacogenetic candidate genes (OPRD1, GAL, ABCB1, OPRM1) with opioid dependence in European population: a case-control study. PLoS One 2013, 8(9):e75359.
  • [23]Bunten H, Liang WJ, Pounder DJ, Seneviratne C, Osselton D: Interindividual variability in the prevalence of OPRM1 and CYP2B6 gene variations may identify drug-susceptible populations. J Anal Toxicol 2011, 35(7):431-437.
  • [24]Compton P, Geschwind DH, Alarcon M: Association between human mu-opioid receptor gene polymorphism, pain tolerance, and opioid addiction. Am J Med Genet Part B Neuropsychiatr Genet 2003, 121B(1):76-82.
  • [25]Deb I, Chakraborty J, Gangopadhyay PK, Choudhury SR, Das S: Single-nucleotide polymorphism (A118G) in exon 1 of OPRM1 gene causes alteration in downstream signaling by mu-opioid receptor and may contribute to the genetic risk for addiction. J Neurochem 2010, 112(2):486-496.
  • [26]Kumar D, Chakraborty J, Das S: Epistatic effects between variants of kappa-opioid receptor gene and A118G of mu-opioid receptor gene increase susceptibility to addiction in Indian population. Prog Neuropsychopharmacol Biol Psychiatry 2012, 36(2):225-230.
  • [27]Levran O, Peles E, Randesi M, Li Y, Rotrosen J, Ott J, et al.: Stress-related genes and heroin addiction: a role for a functional FKBP5 haplotype. Psychoneuroendocrinology 2014, 45:67-76.
  • [28]Nagaya D, Ramanathan S, Ravichandran M, Navaratnam V: A118G mu opioid receptor polymorphism among drug addicts in Malaysia. J Integr Neurosci 2012, 11(1):117-122.
  • [29]Rice JP, Hartz SM, Agrawal A, Almasy L, Bennett S, Breslau N, et al.: CHRNB3 is more strongly associated with Fagerstrom test for cigarette dependence-based nicotine dependence than cigarettes per day: phenotype definition changes genome-wide association studies results. Addiction 2012, 107(11):2019-2028.
  • [30]Sarginson JE, Killen JD, Lazzeroni LC, Fortmann SP, Ryan HS, Schatzberg AF, et al.: Markers in the 15q24 nicotinic receptor subunit gene cluster (CHRNA5-A3-B4) predict severity of nicotine addiction and response to smoking cessation therapy. Am J Med Genet Part B, Neuropsychiatr Genet 2011, 156B(3):275-284.
  • [31]Baker TB, Weiss RB, Bolt D, von Niederhausern A, Fiore MC, Dunn DM, et al.: Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes. Nicotine Tobacco Res 2009, 11(7):785-796.
  • [32]Broms U, Wedenoja J, Largeau MR, Korhonen T, Pitkaniemi J, Keskitalo-Vuokko K, et al.: Analysis of detailed phenotype profiles reveals CHRNA5-CHRNA3-CHRNB4 gene cluster association with several nicotine dependence traits. Nicotine Tobacco Res 2012, 14(6):720-733.
  • [33]Conlon MS, Bewick MA: Single nucleotide polymorphisms in CHRNA5 rs16969968, CHRNA3 rs578776, and LOC123688 rs8034191 are associated with heaviness of smoking in women in Northeastern Ontario, Canada. Nicotine Tobacco Res 2011, 13(11):1076-1083.
  • [34]Culverhouse RC, Johnson EO, Breslau N, Hatsukami DK, Sadler B, Brooks AI, et al.: Multiple distinct CHRNB3-CHRNA6 variants are genetic risk factors for nicotine dependence in African Americans and European Americans. Addiction 2014, 109(5):814-822.
  • [35]Ehringer MA, Clegg HV, Collins AC, Corley RP, Crowley T, Hewitt JK, et al.: Association of the neuronal nicotinic receptor beta2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. Am J Med Genet Part B Neuropsychiatr Genet 2007, 144B(5):596-604.
  • [36]Gabrielsen ME, Romundstad P, Langhammer A, Krokan HE, Skorpen F: Association between a 15q25 gene variant, nicotine-related habits, lung cancer and COPD among 56,307 individuals from the HUNT study in Norway. Eur J Hum Genet 2013, 21(11):1293-1299.
  • [37]Haller G, Kapoor M, Budde J, Xuei X, Edenberg H, Nurnberger J, et al.: Rare missense variants in CHRNB3 and CHRNA3 are associated with risk of alcohol and cocaine dependence. Hum Mol Genet 2014, 23(3):810-819.
  • [38]Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V, et al.: Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 2005, 14(9):1211-1219.
  • [39]Nees F, Witt SH, Lourdusamy A, Vollstadt-Klein S, Steiner S, Poustka L, et al.: Genetic risk for nicotine dependence in the cholinergic system and activation of the brain reward system in healthy adolescents. Neuropsychopharmacology 2013, 38(11):2081-2089.
  • [40]Sherva R, Wilhelmsen K, Pomerleau CS, Chasse SA, Rice JP, Snedecor SM, et al.: Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking. Addiction 2008, 103(9):1544-1552.
  • [41]Sorice R, Bione S, Sansanelli S, Ulivi S, Athanasakis E, Lanzara C, et al.: Association of a variant in the CHRNA5-A3-B4 gene cluster region to heavy smoking in the Italian population. Eur J Hum Genet 2011, 19(5):593-596.
  • [42]Wang JC, Grucza R, Cruchaga C, Hinrichs AL, Bertelsen S, Budde JP, et al.: Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Mol Psychiatry 2009, 14(5):501-510.
  • [43]Wang S, DvdV A, Xu Q, Seneviratne C, Pomerleau OF, Pomerleau CS, et al.: Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations. Hum Genet 2014, 133(5):575-586.
  • [44]Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF: Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst 2011, 103(17):1342-1346.
  • [45]Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N, et al.: A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 2008, 4(7):e1000125.
  • [46]Zeiger JS, Haberstick BC, Schlaepfer I, Collins AC, Corley RP, Crowley TJ, et al.: The neuronal nicotinic receptor subunit genes (CHRNA6 and CHRNB3) are associated with subjective responses to tobacco. Hum Mol Genet 2008, 17(5):724-734.
  • [47]Batel P, Houchi H, Daoust M, Ramoz N, Naassila M, Gorwood P: A haplotype of the DRD1 gene is associated with alcohol dependence. Alcohol Clin Exp Res 2008, 32(4):567-572.
  • [48]Clarke TK, Weiss AR, Ferarro TN, Kampman KM, Dackis CA, Pettinati HM, et al.: The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann Hum Genet 2014, 78(1):33-39.
  • [49]Doehring A, Hentig N, Graff J, Salamat S, Schmidt M, Geisslinger G, et al.: Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet Genomics 2009, 19(6):407-414.
  • [50]Ho AM, Tang NL, Cheung BK, Stadlin A: Dopamine receptor D4 gene -521C/T polymorphism is associated with opioid dependence through cold-pain responses. Ann N Y Acad Sci 2008, 1139:20-26.
  • [51]Mignini F, Napolioni V, Codazzo C, Carpi FM, Vitali M, Romeo M, et al.: DRD2/ANKK1 TaqIA and SLC6A3 VNTR polymorphisms in alcohol dependence: association and gene-gene interaction study in a population of Central Italy. Neurosci Lett 2012, 522(2):103-107.
  • [52]Voisey J, Swagell CD, Hughes IP, van Daal A, Noble EP, Lawford BR, et al.: A DRD2 and ANKK1 haplotype is associated with nicotine dependence. Psychiatry Res 2012, 196(2-3):285-289.
  • [53]Zhu F, Yan CX, Wen YC, Wang J, Bi J, Zhao YL, et al.: Dopamine D1 receptor gene variation modulates opioid dependence risk by affecting transition to addiction. PLoS One 2013, 8(8):e70805.
  • [54]World Health Organization Cancer Pain Relief: With a Guide to Opioid Availability. 2nd edition. World Health Organization, Geneva, Switzerland; 1996.
  • [55]Dev R, Parsons HA, Palla S, Palmer JL, Del Fabbro E, Bruera E: Undocumented alcoholism and its correlation with tobacco and illegal drug use in advanced cancer patients. Cancer 2011, 117(19):4551-4556.
  • [56]Li MD, Burmeister M: New insights into the genetics of addiction. Nat Rev Genet 2009, 10(4):225-231.
  • [57]Cahill E, Salery M, Vanhoutte P, Caboche J: Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Front Pharmacol 2014, 4:172.
  • [58]Brami-Cherrier K, Roze E, Girault JA, Betuing S, Caboche J: Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem 2009, 108(6):1323-1335.
  • [59]Valjent E, Pages C, Herve D, Girault JA, Caboche J: Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 2004, 19(7):1826-1836.
  • [60]Pascoli V, Cahill E, Bellivier F, Caboche J, Vanhoutte P. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation. Biological psychiatry 2014, 76(12):917–926.
  • [61]Knight T, Irving JA: Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol 2014, 4:160.
  • [62]Dafny N, Dougherty PM, Drath D: Immunosuppressive agent modulates the severity of opiate withdrawal. NIDA Res Monogr 1990, 105:553-555.
  • [63]Hutchinson MR, Watkins LR: Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology 2014, 76 Pt B:218-227.
  • [64]Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW: The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 2009, 23(4):492-497.
  • [65]Hutchinson MR, Northcutt AL, Hiranita T, Wang X, Lewis SS, Thomas J, et al.: Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 2012, 32(33):11187-11200.
  • [66]Reyes-Gibby CC, Spitz M, Wu X, Merriman K, Etzel C, Bruera E, et al.: Cytokine genes and pain severity in lung cancer: exploring the influence of TNF-alpha-308 G/A IL6-174G/C and IL8-251T/A. Canc Epidemiol Biomarkers Prev 2007, 16(12):2745-2751.
  • [67]Reyes-Gibby CC, Wang J, Spitz M, Wu X, Yennurajalingam S, Shete S: Genetic variations in interleukin-8 and interleukin-10 are associated with pain, depressed mood, and fatigue in lung cancer patients. J Pain Symptom Manage 2013, 46(2):161-172.
  • [68]Reyes-Gibby CC, Swartz MD, Yu X, Wu X, Yennurajalingam S, Anderson KO, et al.: Symptom clusters of pain, depressed mood, and fatigue in lung cancer: assessing the role of cytokine genes. Support Care Canc 2013, 21(11):3117-3125.
  • [69]Salles A, Romano A, Freudenthal R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. Journal of physiology, Paris 2014, 108(4-6):256–262.
  • [70]Blendy JA, Maldonado R: Genetic analysis of drug addiction: the role of cAMP response element binding protein. J Mol Med (Berl) 1998, 76(2):104-110.
  • [71]Kumar K, Sharma S, Kumar P, Deshmukh R: Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 2013, 110:174-184.
  • [72]Nickols HH, Conn PJ: Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014, 61:55-71.
  • [73]Rivero G, Gabilondo AM, Garcia-Fuster MJ, La Harpe R, Garcia-Sevilla JA, Meana JJ: Differential regulation of RGS proteins in the prefrontal cortex of short- and long-term human opiate abusers. Neuropharmacology 2012, 62(2):1044-1051.
  • [74]Robison AJ. Emerging role of CaMKII in neuropsychiatric disease. Trends in neurosciences 2014, 37(11):653–662.
  • [75]Russo SJ, Nestler EJ: The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013, 14(9):609-625.
  • [76]Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec L, Mierzejewski P, et al. GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 2015, 88:36-47.
  • [77]Bierut LJ, Goate AM, Breslau N, Johnson EO, Bertelsen S, Fox L, et al.: ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol Psychiatry 2012, 17(4):445-450.
  • [78]Cao J, Liu X, Han S, Zhang CK, Liu Z, Li D: Association of the HTR2A gene with alcohol and heroin abuse. Hum Genet 2014, 133(3):357-365.
  • [79]Chen X, Cho K, Singer BH, Zhang H: The nuclear transcription factor PKNOX2 is a candidate gene for substance dependence in European-origin women. PLoS One 2011, 6(1):e16002.
  • [80]Desrivieres S, Krause K, Dyer A, Frank J, Blomeyer D, Lathrop M, et al.: Nucleotide sequence variation within the PI3K p85 alpha gene associates with alcohol risk drinking behaviour in adolescents. PLoS One 2008, 3(3):e1769.
  • [81]Enoch MA, Gorodetsky E, Hodgkinson C, Roy A, Goldman D: Functional genetic variants that increase synaptic serotonin and 5-HT3 receptor sensitivity predict alcohol and drug dependence. Mol Psychiatry 2011, 16(11):1139-1146.
  • [82]Hill SY, Jones BL, Zezza N, Stiffler S: Family-based association analysis of alcohol dependence implicates KIAA0040 on Chromosome 1q in multiplex alcohol dependence families. Open J Genet 2013, 3(4):243-252.
  • [83]Kalsi G, Kuo PH, Aliev F, Alexander J, McMichael O, Patterson DG, et al.: A systematic gene-based screen of chr4q22-q32 identifies association of a novel susceptibility gene, DKK2, with the quantitative trait of alcohol dependence symptom counts. Hum Mol Genet 2010, 19(12):2497-2506.
  • [84]Kuo PH, Kalsi G, Prescott CA, Hodgkinson CA, Goldman D, Alexander J, et al.: Associations of glutamate decarboxylase genes with initial sensitivity and age-at-onset of alcohol dependence in the Irish Affected Sib Pair Study of Alcohol Dependence. Drug Alcohol Depend 2009, 101(1-2):80-87.
  • [85]London ED, Berman SM, Mohammadian P, Ritchie T, Mandelkern MA, Susselman MK, et al.: Effect of the TaqIA polymorphism on ethanol response in the brain. Psychiatry Res 2009, 174(3):163-170.
  • [86]Munoz X, Amiano P, Celorrio D, Dorronsoro M, Sanchez MJ, Huerta JM, et al.: Association of alcohol dehydrogenase polymorphisms and life-style factors with excessive alcohol intake within the Spanish population (EPIC-Spain). Addiction 2012, 107(12):2117-2127.
  • [87]Novo-Veleiro I, Gonzalez-Sarmiento R, Cieza-Borrella C, Pastor I, Laso FJ, Marcos M: A genetic variant in the microRNA-146a gene is associated with susceptibility to alcohol use disorders. Eur Psychiatr 2014, 29(5):288-292.
  • [88]Preuss UW, Ridinger M, Rujescu D, Samochowiec J, Fehr C, Wurst FM, et al.: Association of ADH4 genetic variants with alcohol dependence risk and related phenotypes: results from a larger multicenter association study. Addict Biol 2011, 16(2):323-333.
  • [89]Ray LA, Hutchison KE: Associations among GABRG1, level of response to alcohol, and drinking behaviors. Alcohol Clin Exp Res 2009, 33(8):1382-1390.
  • [90]Samochowiec A, Grzywacz A, Kaczmarek L, Bienkowski P, Samochowiec J, Mierzejewski P, et al.: Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene in alcohol dependence: family and case control study. Brain Res 2010, 1327:103-106.
  • [91]Schumann G, Johann M, Frank J, Preuss U, Dahmen N, Laucht M, et al.: Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch Gen Psychiatry 2008, 65(7):826-838.
  • [92]Treutlein J, Kissling C, Frank J, Wiemann S, Dong L, Depner M, et al.: Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Mol Psychiatry 2006, 11(6):594-602.
  • [93]Wang JC, Foroud T, Hinrichs AL, Le NX, Bertelsen S, Budde JP, et al.: A genome-wide association study of alcohol-dependence symptom counts in extended pedigrees identifies C15orf53. Mol Psychiatry 2013, 18(11):1218-1224.
  • [94]Xuei X, Flury-Wetherill L, Dick D, Goate A, Tischfield J, Nurnberger J Jr, et al.: GABRR1 and GABRR2, encoding the GABA-A receptor subunits rho1 and rho2, are associated with alcohol dependence. Am J Med Genet Part B Neuropsychiatr Genet 2010, 153B(2):418-427.
  • [95]Yang J, Li MD: Association and interaction analyses of 5-HT3 receptor and serotonin transporter genes with alcohol, cocaine, and nicotine dependence using the SAGE data. Hum Genet 2014, 133(7):905-918.
  • [96]Agrawal A, Pergadia ML, Saccone SF, Hinrichs AL, Lessov-Schlaggar CN, Saccone NL, et al.: Gamma-aminobutyric acid receptor genes and nicotine dependence: evidence for association from a case-control study. Addiction 2008, 103(6):1027-1038.
  • [97]Agrawal A, Pergadia ML, Balasubramanian S, Saccone SF, Hinrichs AL, Saccone NL, et al.: Further evidence for an association between the gamma-aminobutyric acid receptor A, subunit 4 genes on chromosome 4 and Fagerstrom Test for Nicotine Dependence. Addiction 2009, 104(3):471-477.
  • [98]Anney RJ, Lotfi-Miri M, Olsson CA, Reid SC, Hemphill SA, Patton GC: Variation in the gene coding for the M5 muscarinic receptor (CHRM5) influences cigarette dose but is not associated with dependence to drugs of addiction: evidence from a prospective population based cohort study of young adults. BMC Genet 2007, 8:46.
  • [99]Berrettini WH, Doyle GA: The CHRNA5-A3-B4 gene cluster in nicotine addiction. Mol Psychiatry 2012, 17(9):856-866.
  • [100]Beuten J, Ma JZ, Payne TJ, Dupont RT, Quezada P, Huang W, et al.: Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers. Am Jo Med Genet Part B Neuropsychiatr Genet 2005, 139B(1):73-80.
  • [101]Beuten J, Ma JZ, Payne TJ, Dupont RT, Crews KM, Somes G, et al.: Single- and multilocus allelic variants within the GABA(B) receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence. Am J Hum Genet 2005, 76(5):859-864.
  • [102]Beuten J, Payne TJ, Ma JZ, Li MD: Significant association of catechol-O-methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations. Neuropsychopharmacology 2006, 31(3):675-684.
  • [103]Chen X, Williamson VS, An SS, Hettema JM, Aggen SH, Neale MC, et al.: Cannabinoid receptor 1 gene association with nicotine dependence. Arch Gen Psychiatry 2008, 65(7):816-824.
  • [104]Docampo E, Ribases M, Gratacos M, Bruguera E, Cabezas C, Sanchez-Mora C, et al.: Association of neurexin 3 polymorphisms with smoking behavior. Genes Brain Behav 2012, 11(6):704-711.
  • [105]Ella E, Sato N, Nishizawa D, Kageyama S, Yamada H, Kurabe N, et al.: Association between dopamine beta hydroxylase rs5320 polymorphism and smoking behaviour in elderly Japanese. J Hum Genet 2012, 57(6):385-390.
  • [106]Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, et al.: Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample. Neuropsychopharmacology 2009, 34(2):319-330.
  • [107]Lang UE, Sander T, Lohoff FW, Hellweg R, Bajbouj M, Winterer G, et al.: Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking. Psychopharmacology (Berl) 2007, 190(4):433-439.
  • [108]Liu YZ, Pei YF, Guo YF, Wang L, Liu XG, Yan H, et al.: Genome-wide association analyses suggested a novel mechanism for smoking behavior regulated by IL15. Mol Psychiatry 2009, 14(7):668-680.
  • [109]Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD: Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet 2005, 14(12):1691-1698.
  • [110]Mobascher A, Rujescu D, Mittelstrass K, Giegling I, Lamina C, Nitz B, et al.: Association of a variant in the muscarinic acetylcholine receptor 2 gene (CHRM2) with nicotine addiction. Am J Med Genet Part B Neuropsychiatr Genet 2010, 153B(2):684-690.
  • [111]Clarke TK, Krause K, Li T, Schumann G: An association of prodynorphin polymorphisms and opioid dependence in females in a Chinese population. Addict Biol 2009, 14(3):366-370.
  • [112]Crist RC, Ambrose-Lanci LM, Zeng A, Yuan C, Kampman KM, Pettinati HM, et al.: Case-control association study of WLS variants in opioid and cocaine addicted populations. Psychiatry Res 2013, 208(1):62-66.
  • [113]de Cid R, Fonseca F, Gratacos M, Gutierrez F, Martin-Santos R, Estivill X, et al.: BDNF variability in opioid addicts and response to methadone treatment: preliminary findings. Genes Brain Behav 2008, 7(5):515-522.
  • [114]Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H, et al.: Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol Psychiatry 2014, 76(1):66-74.
  • [115]Herman AI, Kranzler HR, Cubells JF, Gelernter J, Covault J: Association study of the CNR1 gene exon 3 alternative promoter region polymorphisms and substance dependence. Am J Med Genet Part B Neuropsychiatr Genet 2006, 141B(5):499-503.
  • [116]Kumar D, Deb I, Chakraborty J, Mukhopadhyay S, Das S: A polymorphism of the CREB binding protein (CREBBP) gene is a risk factor for addiction. Brain Res 2011, 1406:59-64.
  • [117]Levran O, Peles E, Hamon S, Randesi M, Adelson M, Kreek MJ: CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict Biol 2013, 18(4):709-716.
  • [118]Liu Z, Guo X, Jiang Y, Zhang H: NCK2 is significantly associated with opiates addiction in African-origin men. Sci World J 2013, 2013:748979.
  文献评价指标  
  下载次数:70次 浏览次数:30次