期刊论文详细信息
BMC Systems Biology
Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network
Stefan de Folter1  Elena R Alvarez-Buylla3  Gerco C Angenent5  Richard GH Immink4  Carlos Espinosa-Soto2 
[1] Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico;Current address: Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, C.P. 78290 San Luis Potosí, Mexico;Departamento de Ecología Funcional. Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, 3er Circ. Ext. Jto. Jard. Bot., CU, C.P. 04510 Mexico, D.F., Mexico;Plant Research International, 6700 AA Wageningen, The Netherlands;Laboratory of Molecular Biology, Wageningen University, 6700 AA Wageningen, The Netherlands
关键词: Arabidopsis thaliana;    Subgraph abundance;    Tetramers;    Transcription factors;    Protein-protein interaction network;    MADS domain proteins;   
Others  :  1141459
DOI  :  10.1186/1752-0509-8-9
 received in 2013-09-21, accepted in 2014-01-02,  发布年份 2014
PDF
【 摘 要 】

Background

MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear.

Results

We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade.

Conclusions

Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins.

【 授权许可】

   
2014 Espinosa-Soto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327051723261.pdf 1329KB PDF download
Figure 6. 24KB Image download
Figure 5. 20KB Image download
Figure 4. 20KB Image download
Figure 3. 29KB Image download
Figure 2. 28KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Gramzow L, Ritz MS, Theißen G: On the origin of MADS-domain transcription factors. Trends Genet 2010, 26(4):149-153. doi:10.1016/j.tig.2010.01.004
  • [2]Gramzow L, Theißen G: A hitchhiker’s guide to the MADS world of plants. Genome Biol 2010, 11(6):214. BioMed Central Full Text
  • [3]Lawton-Rauh AL, Alvarez-Buylla ER, Purugganan MD: Molecular evolution of flower development. Trends Ecol Evol 2000, 15(4):144-149.
  • [4]Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L: Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell 2003, 15(7):1538-1551. doi:10.1105/tpc.011544.these
  • [5]Martínez-Castilla LP, Alvarez-Buylla ER: Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci USA 2003, 100(23):13407-13412. doi:10.1073/pnas.1835864100
  • [6]Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H: A short history of MADS-box genes in plants. Plant Mol Biol 2000, 42(1):115-149.
  • [7]Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM: The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 2011, 23(3):865-872. doi:10.1105/tpc.110.081737
  • [8]Airoldi CA, Davies B: Gene duplication and the evolution of plant MADS-box transcription factors. J Genet Genomics 2012, 39(4):157-165. doi:10.1016/j.jgg.2012.02.008
  • [9]Smaczniak C, Immink RGH, Angenent GC, Kaufmann K: Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012, 139(17):3081-3098. doi:10.1242/dev.074674
  • [10]Herrera-Ubaldo H, Zanchetti E, Colombo L, de Folter S: Protein interactions guiding carpel and fruit development in Arabidopsis. Plant Biosystin press. doi:10.1080/11263504.2013.870255
  • [11]Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER: Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 2007, 24(2):465-481. doi:10.1093/molbev/msl182
  • [12]Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martínez-Castilla LP, Yanofsky MF: An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 2000, 97(10):5328-5333.
  • [13]Riechmann JL, Krizek BA, Meyerowitz EM: Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA 1996, 93(10):4793-4798.
  • [14]Egea-Cortines M, Saedler H, Sommer H: Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 1999, 18(19):5370-5379. doi:10.1093/emboj/18.19.5370
  • [15]de Folter S, Immink RGH, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC: Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 2005, 17(5):1424-1433. doi:10.1105/tpc.105.031831.1
  • [16]Immink RGH, Kaufmann K, Angenent GC: The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 2010, 21(1):87-93. doi:10.1016/j.semcdb.2009.10.004
  • [17]Theißen G: Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 2001, 4(1):75-85.
  • [18]Theißen G, Saedler H: Floral quartets. Nature 2001, 409:469-471.
  • [19]de Folter S, Angenent GC: trans meets cis in MADS science. Trends Plant Sci 2006, 11(5):224-231. doi:10.1016/j.tplants.2006.03.008
  • [20]Melzer R, Theißen G: Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 2009, 37(8):2723-2736. doi:10.1093/nar/gkp129
  • [21]Melzer R, Verelst W, Theißen G: The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res 2009, 37(1):144-157. doi:10.1093/nar/gkn900
  • [22]Honma T, Goto K: Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 2001, 409:525-529.
  • [23]Pelaz S, Tapia-López R, Alvarez-Buylla ER, Yanofsky MF: Conversion of leaves into petals in Arabidopsis. Curr Biol 2001, 11(3):182-184.
  • [24]Smaczniak C, Immink RGH, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QP, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K: Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 2012, 109(5):1560-1565. doi:10.1073/pnas.1112871109/-/DCSupplemental.http://www.pnas.org/cgi/doi/10.1073/pnas.1112871109 webcite
  • [25]Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, Busscher-Lange J, Borst JW, Angenent GC: SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 2009, 10(2):24. doi:10.1186/gb-2009-10-2-r24 BioMed Central Full Text
  • [26]Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31(1):64-68. doi:10.1038/ng881
  • [27]Milo R, Shen-Orr SS, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science 2002, 298(5594):824-827. doi:10.1126/science.298.5594.824
  • [28]Milo R, Itzkovitz S, Kashtan N, Levitt R: Superfamilies of evolved and designed networks. Science 2004, 303(March):8-10.
  • [29]Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 2003, 100(21):11980-11985. doi:10.1073/pnas.2133841100
  • [30]Alon U: Network motifs: theory and experimental approaches. Nat Rev Genet 2007, 8(6):450-461. doi:10.1038/nrg2102
  • [31]Mizukami Y, Huang H, Tudor M, Hu Y, Ma H: Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 1996, 8(5):831-845. doi:10.1105/tpc.8.5.831
  • [32]Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H: DNA binding properties of two Arabidopsis MADS domain proteins binding consensus and dimer formation. Plant Cell 1996, 8(1):81-94. doi:10.1105/tpc.8.1.81
  • [33]Fan H-Y, Hu Y, Tudor M, Ma H: Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 1997, 12(5):999-1010.
  • [34]Yang Y, Jack T: Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol Biol 2004, 55(1):45-59. doi:10.1007/s11103-004-0416-7
  • [35]Martín-Trillo M, Cubas P: TCP genes: a family snapshot ten years later. Trends Plant Sci 2010, 15(1):31-39. doi:10.1016/j.tplants.2009.11.003
  • [36]Danisman S, van derWal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk ADJ, Muino JM, Cutri L, Dornelas MC, Angenent GC, Immink RGH: Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 2012, 159(4):1511-1523. doi:10.1104/pp.112.200303
  • [37]Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L: MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 2003, 15(11):2603-2611. doi:10.1105/tpc.015123.2
  • [38]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995, 57(1):289-300.
  • [39]Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RGH: Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot 2013, 64(18):5673-5685. doi:10.1093/jxb/ert337
  • [40]Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. Nat Genet 2005, 37(5):501-506. doi:10.1038/ng1543
  • [41]Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N, Vuylsteke M, Schölkopf B, Rätsch G, Weigel D: At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 2008, 9(7):112. doi:10.1186/gb-2008-9-7-r112 BioMed Central Full Text
  • [42]Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF: B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 2000, 405:200-203.
  • [43]Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H: Multiple interactions amongst floral homeotic MADS box proteins. EMBO J 1996, 15(16):4330-4343.
  • [44]Gregis V, Sessa A, Colombo L, Kater MM: AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J 2008, 56(6):891-902. doi:10.1111/j.1365-313X.2008.03648.x
  • [45]Kempin S, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype in Arabidopsis. Science 1995, 267(5197):522-525. doi:10.1126/science.7824951
  • [46]Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF: SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 2000, 404(6779):766-770. doi:10.1038/35008089
  • [47]Gómez-Mena C, de Folter S, Costa MMR, Angenent GC, Sablowski R: Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 2005, 132(3):429-438. doi:10.1242/dev.01600
  • [48]Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001, 98(8):4569-4574. doi:10.1073/pnas.061034498
  • [49]Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403(6770):623-627. doi:10.1038/35001009
  • [50]Alvarez-Buylla ER, Benítez M, Dávila EB, Chaos A, Espinosa-Soto C, Padilla-Longoria P: Gene regulatory network models for plant development. Curr Opin Plant Biol 2007, 10(1):83-91. doi:10.1016/j.pbi.2006.11.008
  • [51]van Dijk ADJ, Morabito G, Fiers M, van Ham RCHJ, Angenent GC, Immink RGH: Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction. PLoS Comput Biol 2010, 6(11):1001017. doi:10.1371/journal.pcbi.1001017
  • [52]Albert R: Scale-free networks in cell biology. J Cell Sci 2005, 118(Pt 21):4947-4957. doi:10.1242/jcs.02714
  • [53]Albert R: Network inference, analysis, and modeling in systems biology. Plant Cell 2007, 19(11):3327-3338. doi:10.1105/tpc.107.054700
  • [54]Barabási A-L: Linked. The New Science of Networks. Cambridge: Perseus Publishing; 2002: 280.
  • [55]Barabási A-L, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004, 5(2):101-113. doi:10.1038/nrg1272
  • [56]Maslov S, Sneppen K: Specificity and stability in topology of protein networks. Science 2002, 296(5569):910-913. doi:10.1126/science.1065103
  • [57]Solé RV, Valverde S: Are network motifs the spandrels of cellular complexity? Trends Ecol Evol 2006, 21(8):419-422. doi:10.1016/j.tree.2006.06.001
  • [58]Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L: Comment on “Network motifs: simple building blocks of complex networks” and “Superfamilies of evolved and designed networks”. Science 2004, 305:1107.
  • [59]Kuo PD, Banzhaf W, Leier A: Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. Biosystems 2006, 85(3):177-200. doi:10.1016/j.biosystems.2006.01.004
  • [60]Alon U: Biological networks: the tinkerer as an engineer. Science 2003, 301(5641):1866-1867. doi:10.1126/science.1089072
  • [61]Conant GC, Wagner A: Convergent evolution of gene circuits. Nat Genet 2003, 34(3):264-266. doi:10.1038/ng1181
  • [62]Ramot R, Kishore Inampudi K, Wilson CJ: Lactose repressor experimental folding landscape: fundamental functional unit and tetramer folding mechanisms. Biochemistry 2012, 51(38):7569-7579. doi:10.1021/bi300545f
  • [63]John S, Vinkemeier U, Soldaini E, Darnell JE, Leonard WJ: The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 1999, 19(3):1910-1918.
  • [64]Fillet S, Krell T, Morel B, Lu D, Zhang X, Ramos JL: Intramolecular signal transmission in a tetrameric repressor of the IclR family. Proc Natl Acad Sci USA 2011, 108(37):15372-15377. doi:10.1073/pnas.1018894108/-/ DCSupplemental.http://www.pnas.org/cgi/doi/10.1073/pnas.1018894108 webcite
  • [65]Nair SK, Burley SK: X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003, 112(2):193-205.
  • [66]Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV, Fersht AR: Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc Natl Acad Sci USA 2009, 106(42):17705-17710. doi:10.1073/pnas.0905867106
  • [67]Natan E, Joerger AC: Structure and kinetic stability of the p63 tetramerization domain. J Mol Biol 2012, 415(3):503-513. doi:10.1016/j.jmb.2011.11.007
  • [68]Harary F: Graph Theory. Addison-Wesley: Reading; 1969: 280.
  文献评价指标  
  下载次数:0次 浏览次数:3次