期刊论文详细信息
BMC Neuroscience
Fast construction of voxel-level functional connectivity graphs
Christian Borgelt1  Rudolf Kruse3  Christian M Stoppel4  Marcus Grueschow2  Kristian Loewe3 
[1] European Centre for Soft Computing, Mieres (Asturias), Spain;Department of Economics, University of Zürich, Zürich, Switzerland;Department of Knowledge and Language Processing, Otto-von-Guericke Universität, Magdeburg, Germany;Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
关键词: fMRI;    Resting-state;    Tetrachoric correlation;    Graph theory;    Functional connectivity;   
Others  :  799210
DOI  :  10.1186/1471-2202-15-78
 received in 2013-11-24, accepted in 2014-06-04,  发布年份 2014
PDF
【 摘 要 】

Background

Graph-based analysis of fMRI data has recently emerged as a promising approach to study brain networks. Based on the assessment of synchronous fMRI activity at separate brain sites, functional connectivity graphs are constructed and analyzed using graph-theoretical concepts. Most previous studies investigated region-level graphs, which are computationally inexpensive, but bring along the problem of choosing sensible regions and involve blurring of more detailed information. In contrast, voxel-level graphs provide the finest granularity attainable from the data, enabling analyses at superior spatial resolution. They are, however, associated with considerable computational demands, which can render high-resolution analyses infeasible. In response, many existing studies investigating functional connectivity at the voxel-level reduced the computational burden by sacrificing spatial resolution.

Methods

Here, a novel, time-efficient method for graph construction is presented that retains the original spatial resolution. Performance gains are instead achieved through data reduction in the temporal domain based on dichotomization of voxel time series combined with tetrachoric correlation estimation and efficient implementation.

Results

By comparison with graph construction based on Pearson’s r, the technique used by the majority of previous studies, we find that the novel approach produces highly similar results an order of magnitude faster.

Conclusions

Its demonstrated performance makes the proposed approach a sensible and efficient alternative to customary practice. An open source software package containing the created programs is freely available for download.

【 授权许可】

   
2014 Loewe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140707023554769.pdf 1749KB PDF download
Figure 5. 87KB Image download
Figure 5. 87KB Image download
Figure 4. 103KB Image download
Figure 4. 103KB Image download
Figure 4. 103KB Image download
Figure 4. 103KB Image download
Figure 4. 103KB Image download
Figure 3. 74KB Image download
Figure 3. 74KB Image download
Figure 3. 74KB Image download
Figure 2. 32KB Image download
Figure 2. 32KB Image download
Figure 2. 32KB Image download
Figure 2. 32KB Image download
Figure 2. 32KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 2.

Figure 2.

Figure 2.

Figure 2.

Figure 3.

Figure 3.

Figure 3.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 5.

Figure 5.

【 参考文献 】
  • [1]Salvador R, Suckling J, Coleman M, Pickard J, Menon D, Bullmore E: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 2005, 15(9):1332-1342.
  • [2]Eguiluz V, Chialvo D, Cecchi G, Baliki M, Apkarian A: Scale-free brain functional networks. Physical Rev Lett 2005, 94:18102.
  • [3]Bullmore E, Sporns O: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009, 10(3):186-198.
  • [4]Wang J, Zuo X, He Y: Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 2010, 4(16):1-14.
  • [5]Friston K, Frith C, Liddle P, Frackowiak R: Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 1993, 13:5-14.
  • [6]Rubinov M, Sporns O: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010, 52(3):1059-1069.
  • [7]Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 2006, 26:63-72.
  • [8]van den Heuvel M, Stam C, Boersma M, Hulshoff Pol H: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 2008, 43(3):528-539.
  • [9]Fair D, Cohen A, Power J, Dosenbach N, Church J, Miezin F, Schlaggar B, Petersen S: Functional brain networks develop from a local to distributed organization. PLoS Comput Biol 2009, 5(5):e1000381.
  • [10]Supekar K, Musen M, Menon V: Development of large-scale functional brain networks in children. PLoS Biology 2009, 7(7):e1000157.
  • [11]Tomasi D, Volkow N: Aging and functional brain networks. Mol Psychiat 2012, 17(5):549-558.
  • [12]Tomasi D, Volkow ND: Gender differences in brain functional connectivity density. Hum Brain Mapp 2012, 33(4):849-860.
  • [13]van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE: Efficiency of functional brain networks and intellectual performance. J Neurosci 2009, 29(23):7619-7624.
  • [14]Supekar K, Menon V, Rubin D, Musen M, Greicius MD: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 2008, 4(6):e1000100.
  • [15]Buckner R, Sepulcre J, Talukdar T, Krienen F, Liu H, Hedden T, Andrews-Hanna J, Sperling R, Johnson K: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 2009, 29(6):1860-1873.
  • [16]Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T: Disrupted small-world networks in schizophrenia. Brain 2008, 131(4):945-961.
  • [17]Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E: Functional connectivity and brain networks in schizophrenia. J Neurosci 2010, 30(28):9477-9487.
  • [18]He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans A: Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 2009, 4(4):e5226.
  • [19]Scheinost D, Benjamin J, Lacadie C, Vohr B, Schneider K, Ment L, Papademetris X, Constable R: The intrinsic connectivity distribution: a novel contrast measure reflecting voxel level functional connectivity. NeuroImage 2012, 62(3):1510-1519.
  • [20]Smith S, Miller K, Salimi-Khorshidi G, Webster M, Beckmann C, Nichols T, Ramsey J, Woolrich M: Network modelling methods for FMRI. Neuroimage 2011, 54(2):875-891.
  • [21]Tomasi D, Volkow N: Functional connectivity density mapping. Proc Nat Acad Sci 2010, 107(21):9885.
  • [22]Tomasi D, Volkow N: Association between functional connectivity hubs and brain networks. Cereb Cortex 2011, 21(9):2003-2013.
  • [23]van den Heuvel M, Mandl R, Hulshoff Pol H: Normalized cut group clustering of resting-state FMRI data. PLoS One 2008, 3(4):e2001.
  • [24]Hayasaka S, Laurienti P: Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage 2010, 50(2):499-508.
  • [25]Fransson P, Åden U, Blennow M, Lagercrantz H: The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 2011, 21:145-154.
  • [26]Valencia M, Pastor M, Fernández-Seara M, Artieda J, Martinerie J, Chavez M: Complex modular structure of large-scale brain networks. Chaos 2009, 19(2):023119-023119.
  • [27]Zuo X, Ehmke R, Mennes M, Imperati D, Castellanos F, Sporns O, Milham M: Network centrality in the human functional connectome. Cereb Cortex 2012, 22(8):1862-1875.
  • [28]Rubinov M, Sporns O: Weight-conserving characterization of complex functional brain networks. Neuroimage 2011, 56(4):2068-2079.
  • [29]Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL: The Organization of Local and Distant Functional Connectivity in the Human Brain. PLoS Comput Biol 2010, 6(6):e1000808.
  • [30]Power J, Cohen A, Nelson S, Wig G, Barnes K, Church J, Vogel A, Laumann T, Miezin F, Schlaggar B, Petersen S: Functional network organization of the human brain. Neuron 2011, 72(4):665-678.
  • [31]Tomasi D, Volkow N: Functional connectivity hubs in the human brain. Neuroimage 2011, 57:908-917.
  • [32]Kowalski CJ: On the effects of non-normality on the distribution of the sample product-moment correlation coefficient. J R Stat Soc Series C (Appl Stat) 1972, 21:1-12.
  • [33]Hlinka J, Paluṡ M, Vejmelka M, Mantini D, Corbetta M: Functional connectivity in resting-state fMRI: Is linear correlation sufficient? Neuroimage 2011, 54(3):2218-2225.
  • [34]Pearson K: Mathematical contributions to the theory of evolution. VII. on the correlation of characters not quantitatively measurable. Philos Trans R Soc Lond 1900, 195:1-47.
  • [35]Loewe K, Grueschow M, Borgelt C: Mining local connectivity patterns in fMRI data. In Towards Advanced Data Analysis by Combining Soft Computing and Statistics, Volume 285 of Studies in Fuzziness and Soft Computing. Edited by Borgelt C, Ángeles Gil M, Sousa J, Verleysen M. Berlin Heidelberg: Springer; 2013:305-317.
  • [36]1000 Functional connectomes project [http://www.nitrc.org/projects/fcon_1000 webcite]
  • [37]Biswal B, Mennes M, Zuo X, Gohel S, Kelly C, Smith S, Beckmann C, Adelstein J, Buckner R, Colcombe S, Dogonowski A, Ernst M, Fair D, Hampson M, Hoptman M, Hyde J, Kiviniemi V, Kötter R, Li S, Lin C, Lowe M, Mackay C, Madden D, Madsen K, Margulies D, Mayberg H, McMahon K, Monk C, Mostofsky S, Nagel B, et al.: Toward discovery science of human brain function. Proc Nat Acad Sci 2010, 107(10):4734.
  • [38]SPM8 - statistical parametric mapping [http://www.fil.ion.ucl.ac.uk/spm/software/spm8 webcite]
  • [39]van den Heuvel M, Hulshoff Pol H: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010, 20(8):519-534.
  • [40]Freeman L: Centrality in social networks conceptual clarification. Soc Netw 1979, 1(3):215-239.
  • [41]Friston K, Ashburner J, Frith C, Poline J, Heather J, Frackowiak R: Spatial registration and normalization of images. Hum Brain Mapp 1995, 3(3):165-189.
  • [42]Ashburner J, Neelin P, Collins D, Evans A, Friston K: Incorporating prior knowledge into image registration. Neuroimage 1997, 6(4):344-352.
  • [43]Ashburner J, Friston K: Nonlinear spatial normalization using basis functions. Hum Brain Mapp 1999, 7(4):254-266.
  • [44]Kristian Löwe’s web pages [http://www.kristianloewe.com/software.html webcite]
  • [45]Prokop H: Cache-oblivious algorithms. Ma thesisMassachusets Institute of Technology, Cambridge, USA 1999
  • [46]Frigo M, Leiserson C, Prokop H, Ramachandran S: Cache-oblivious Algorithms. In Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS’99, New York, NY). Piscataway, USA: IEEE Press; 1999.
  • [47]Fisher R: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 1915, 10:507-521.
  • [48]Zimmerman D, Zumbo B, Williams R: Bias in estimation and hypothesis testing of correlation. Psicológica 2003, 24(1):133-158.
  • [49]Poldrack R: The future of fMRI in cognitive neuroscience. NeuroImage 2012, 62(2):1216-1220.
  • [50]Poline J, Breeze J, Ghosh S, Gorgolewski K, Halchenko Y, Hanke M, Haselgrove C, Helmer K, Keator D, Marcus D, Poldrack R, Schwartz Y, Ashburner J, Kennedy D: Data sharing in neuroimaging research. Front Neuroinform 2012, 6(9):1-13.
  • [51]Milham M: Open neuroscience solutions for the connectome-wide association era. Neuron 2012, 73(2):214-218.
  • [52]Buckner R: Human functional connectivity: new tools, unresolved questions. Proc Nat Acad Sci 2010, 107(24):10769.
  • [53]Zuo XN, Xu T, Jiang L, Yang Z, Cao XY, He Y, Zang YF, Castellanos FX, Milham MP: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. Neuroimage 2013, 65:374-386.
  文献评价指标  
  下载次数:206次 浏览次数:35次