期刊论文详细信息
BMC Genomics
The venomous cocktail of the vampire snail Colubraria reticulata (Mollusca, Gastropoda)
Marco Oliverio3  Paolo Franchini2  Fabrizio Lombardo1  Maria Vittoria Modica3 
[1] Department of Public Health and Infectious Diseases, Sapienza University, Rome, I-00185, Italy;Department of Biology, University of Konstanz, Konstanz, D-78745, Germany;Department of Biology and Biotechnologies “C. Darwin”, Sapienza University, Rome, I-00185, Italy
关键词: Mid-oesophagus;    Salivary glands;    vWFA;    Kunitz/TFPI peptides;    Hematophagy;    NGS;    Transcriptome;    Neogastropoda;    Colubraria;   
Others  :  1211965
DOI  :  10.1186/s12864-015-1648-4
 received in 2015-01-20, accepted in 2015-05-20,  发布年份 2015
PDF
【 摘 要 】

Background

Hematophagy arose independently multiple times during metazoan evolution, with several lineages of vampire animals particularly diversified in invertebrates. However, the biochemistry of hematophagy has been studied in a few species of direct medical interest and is still underdeveloped in most invertebrates, as in general is the study of venom toxins. In cone snails, leeches, arthropods and snakes, the strong target specificity of venom toxins uniquely aligns them to industrial and academic pursuits (pharmacological applications, pest control etc.) and provides a biochemical tool for studying biological activities including cell signalling and immunological response. Neogastropod snails (cones, oyster drills etc.) are carnivorous and include active predators, scavengers, grazers on sessile invertebrates and hematophagous parasites; most of them use venoms to efficiently feed. It has been hypothesized that trophic innovations were the main drivers of rapid radiation of Neogastropoda in the late Cretaceous.

We present here the first molecular characterization of the alimentary secretion of a non-conoidean neogastropod, Colubraria reticulata. Colubrariids successfully feed on the blood of fishes, throughout the secretion into the host of a complex mixture of anaesthetics and anticoagulants. We used a NGS RNA-Seq approach, integrated with differential expression analyses and custom searches for putative secreted feeding-related proteins, to describe in detail the salivary and mid-oesophageal transcriptomes of this Mediterranean vampire snail, with functional and evolutionary insights on major families of bioactive molecules.

Results

A remarkably low level of overlap was observed between the gene expression in the two target tissues, which also contained a high percentage of putatively secreted proteins when compared to the whole body. At least 12 families of feeding-related proteins were identified, including: 1) anaesthetics, such as ShK Toxin-containing proteins and turripeptides (ion-channel blockers), Cysteine-rich secretory proteins (CRISPs), Adenosine Deaminase (ADA); 2) inhibitors of primary haemostasis, such as novel vWFA domain-containing proteins, the Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5) and the wasp Antigen-5; 3) anticoagulants, such as TFPI-like multiple Kunitz-type protease inhibitors, Peptidases S1 (PS1), CAP/ShKT domain-containing proteins, Astacin metalloproteases and Astacin/ShKT domain-containing proteins; 4) additional proteins, such the Angiotensin-Converting Enzyme (ACE: vasopressive) and the cytolytic Porins.

Conclusions

Colubraria feeding physiology seems to involve inhibitors of both primary and secondary haemostasis, anaesthetics, a vasoconstrictive enzyme to reduce feeding time and tissue-degrading proteins such as Porins and Astacins. The complexity of Colubraria venomous cocktail and the divergence from the arsenal of the few neogastropods studied to date (mostly conoideans) suggest that biochemical diversification of neogastropods might be largely underestimated and worth of extensive investigation.

【 授权许可】

   
2015 Modica et al.

【 预 览 】
附件列表
Files Size Format View
20150612022254727.pdf 2193KB PDF download
Fig. 10. 40KB Image download
Fig. 9. 42KB Image download
Fig. 8. 58KB Image download
Fig. 7. 38KB Image download
Fig. 6. 105KB Image download
Fig. 5. 68KB Image download
Fig. 4. 22KB Image download
Fig. 3. 25KB Image download
Fig. 2. 90KB Image download
Fig. 1. 63KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995; 4:143-152.
  • [2]Lehane MJ. The Biology of Blood-Sucking in Insects. Cambridge University Press, Cambridge, UK; 2005.
  • [3]Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013; 28:219-229.
  • [4]Kvist S, Min G-S, Siddall ME. Diversity and selective pressures of anticoagulants in three medicinal leeches (Hirudinida: Hirudinidae, Macrobdellidae). Ecol Evol. 2013; 3:919-933.
  • [5]Salzet M. Anticoagulants and inhibitors of platelet aggregation derived from leeches. FEBS Lett. 2001; 429:187-192.
  • [6]Francischetti IM. Platelet aggregation inhibitors from hematophagous animals. Toxicon. 2010; 56:1130-1144.
  • [7]Ribeiro JM, Francischetti IM. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. 2003; 48:73-88.
  • [8]Kazimirova M, Stibraniova I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013; 3:43.
  • [9]Hiller E. Basic Principles of Hemostasis. In: Munker R, Hiller E, Glass J, Paquette R, editors. Modern Hematology. Totowa, New Jersey: Humana Press. 2007, pp. 327-345.
  • [10]O’Sullivan JB, McConnaughey RR, Huber ME. A blood-sucking snail: the Cooper’s nutmeg Cancellaria cooperi Gabb, parasitizes the california electric ray, Torpedo californica Ayres. Biol Bull. 1987; 172:362-366.
  • [11]Bouchet P, Perrine D. More gastropods feeding at night on parrotfishes. Bull Mar Sci. 1996; 59:224-228.
  • [12]Bouchet P. A marginellid gastropod parasitize sleeping fishes. Bull Mar Sci. 1989; 45:76-84.
  • [13]Kosuge S. Description of a new species of ecto-parasitic snail on fish. Bull Inst Malacol. 1986; 2:77-78.
  • [14]Cunha RL, Grande C, Zardoya R. Neogastropod phylogenetic relationships based on entire mitochondrial genomes. BMC Evol Biol. 2009; 9:210.
  • [15]Oliverio M, Modica MV. Relationships of the haematophagous marine snailColubraria(Rachiglossa: Colubrariidae), within the neogastropod phylogenetic framework. Zool J Linnean Soc. 2010; 158:779-800.
  • [16]Zou S, Li Q, Kong L. Additional gene data and increased sampling give new insights into the phylogenetic relationships of Neogastropoda, within the caenogastropod phylogenetic framework. Mol Phylogenet Evol. 2011; 61:425-435.
  • [17]Taylor JD, Morris NJ, Taylor CN. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology. 1980; 23:375-409.
  • [18]Modica MV, Holford M. The Neogastropoda: Evolutionary Innovations of Predatory Marine Snails with Remarkable Pharmacological Potential. 2010.
  • [19]Castelin M, Puillandre N, Kantor YI, Modica MV, Terryn Y et al.. Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae). Mol Phylogenet Evol. 2012; 64:21-44.
  • [20]Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K et al.. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014; 5:3521.
  • [21]Imperial JS, Kantor Y, Watkins M, Heralde FM, Stevenson B et al.. Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology. J Exp Zool B Mol Dev Evol. 2007; 308:744-756.
  • [22]Olivera BM. CONUS VENOM PEPTIDES: Reflections from the Biology of Clades and Species. Annu Rev Ecol Syst. 2002; 33:25-47.
  • [23]Johnson S, Johnson J, Jazwinski S. Parasitism of sleeping fish by gastropod mollusks in the Colubrariidae and Marginellidae at Kwajalein, Marshall Islands. Festivus. 1995; 27:121-126.
  • [24]Kantor Y. Phylogeny and relationships of Neogastropoda. In: Origin and evolutionary radiation of the Mollusca. Taylor JD, editor. Oxford University Press, Oxford; 1996: p.221-230.
  • [25]Kantor Y. Morphological prerequisite for understanding neogastropod phylogeny. Bollettino Malacologico Supplement. 2002; 4:161-174.
  • [26]Ponder WF. The origin and evolution of the Neogastropoda. Malacologia. 1973; 12:295-338.
  • [27]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-3402.
  • [28]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N et al.. InterProScan: protein domains identifier. Nucleic Acids Res. 2005; 33:W116-120.
  • [29]Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics. 2011; 12:317.
  • [30]Riesgo A, Andrade SC, Sharma PP, Novo M, Perez-Porro AR et al.. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool. 2012; 9:33.
  • [31]Sun J, Wang M, Wang H, Zhang H, Zhang X et al.. De novo assembly of the transcriptome of an invasive snail and its multiple ecological applications. Mol Ecol Resour. 2012; 12:1133-1144.
  • [32]Huan P, Liu G, Wang H, Liu B. Multiple ferritin subunit genes of the Pacific oyster Crassostrea gigas and their distinct expression patterns during early development. Gene. 2014; 546:80-88.
  • [33]Goyal K, WL J, Browne JA, Burnell AM, Tunnacliffe A. Molecular Anhydrobiology: Identifying Molecules Implicated in Invertebrate Anhydrobiosis. Integr Comp Biol. 2005; 45:702-709.
  • [34]Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW et al.. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. J Proteome Res. 2012; 11:6197-6212.
  • [35]Morgenstern D, Rohde BH, King GF, Tal T, Sher D et al.. The tale of a resting gland: transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon. 2011; 57:695-703.
  • [36]Vincent B, Kaeslin M, Roth T, Heller M, Poulain J et al.. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics. 2010; 11:693.
  • [37]Hiller K, Grote A, Scheer M, Munch R, Jahn D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004; 32:W375-379.
  • [38]Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8:785-786.
  • [39]Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O et al.. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol. 2005; 208:3971-3986.
  • [40]Ribeiro JM, Arca B, Lombardo F, Calvo E, Phan VM et al.. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics. 2007; 8:6.
  • [41]Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN et al.. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006; 36:111-129.
  • [42]Schneppenheim R, Budde U. von Willebrand factor: the complex molecular genetics of a multidomain and multifunctional protein. J Thromb Haemost. 2011; 9 Suppl 1:209-215.
  • [43]Terraube V, O’Donnell JS, Jenkins PV. Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance. Haemophilia. 2010; 16:3-13.
  • [44]Keeney S, Cumming AM. The molecular biology of von Willebrand disease. Clin Lab Haematol. 2001; 23:209-230.
  • [45]Huizinga EG, Tsuji S, Romijn RA, Schiphorst ME, de Groot PG et al.. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science. 2002; 297:1176-1179.
  • [46]Vasudevan S, Roberts JR, McClintock RA, Dent JA, Celikel R et al.. Modeling and functional analysis of the interaction between von Willebrand factor A1 domain and glycoprotein Ibalpha. J Biol Chem. 2000; 275:12763-12768.
  • [47]Cooney KA, Nichols WC, Bruck ME, Bahou WF, Shapiro AD et al.. The molecular defect in type IIB von Willebrand disease. Identification of four potential missense mutations within the putative GpIb binding domain. J Clin Investig. 1991; 87:1227-1233.
  • [48]Federici AB, Mannucci PM, Stabile F, Canciani MT, Di Rocco N et al.. A type 2b von Willebrand disease mutation (Ile546→Val) associated with an unusual phenotype. Thromb Haemost. 1997; 78:1132-1137.
  • [49]Liao M, Zhou J, Gong H, Boldbaatar D, Shirafuji R et al.. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. J Insect Physiol. 2009; 55:164-173.
  • [50]Garcia GR, Gardinassi LG, Ribeiro JM, Anatriello E, Ferreira BR et al.. The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq. Parasit Vectors. 2014; 7:430.
  • [51]Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD et al.. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009; 10:483-511.
  • [52]Dai SX, Zhang AD, Huang JF. Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes Scapularis. BMC Evol Biol. 2012; 12:4.
  • [53]Bayrhuber M, Vijayan V, Ferber M, Graf R, Korukottu J et al.. Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characterization. J Biol Chem. 2005; 280:23766-23770.
  • [54]Louw E, van der Merwe NA, Neitz AW, Maritz-Olivier C. Evolution of the tissue factor pathway inhibitor-like Kunitz domain-containing protein family in Rhipicephalus microplus. Int J Parasitol. 2013; 43:81-94.
  • [55]Corral-Rodriguez MA, Macedo-Ribeiro S, Barbosa Pereira PJ, Fuentes-Prior P. Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol. 2009; 39:579-595.
  • [56]Iwanaga S, Okada M, Isawa H, Morita A, Yuda M et al.. Identification and characterization of novel salivary thrombin inhibitors from the ixodidae tick, Haemaphysalis longicornis. Eur J Biochem. 2003; 270:1926-1934.
  • [57]Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R et al.. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One. 2008; 3:e1624.
  • [58]Lai R, Takeuchi H, Jonczy J, Rees HH, Turner PC. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene. 2004; 342:243-249.
  • [59]Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S et al.. Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev. 2001; 21:105-128.
  • [60]Charlab R, Rowton ED, Ribeiro JM. The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis. Exp Parasitol. 2000; 95:45-53.
  • [61]Ribeiro JM, Charlab R, Valenzuela JG. The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti. J Exp Biol. 2001; 204:2001-2010.
  • [62]Kato H, Jochim RC, Lawyer PG, Valenzuela JG. Identification and characterization of a salivary adenosine deaminase from the sand fly Phlebotomus duboscqi, the vector of Leishmania major in sub-Saharan Africa. J Exp Biol. 2007; 210:733-740.
  • [63]Ribeiro JM, Assumpcao TC, Ma D, Alvarenga PH, Pham VM et al.. An insight into the sialotranscriptome of the cat flea, Ctenocephalides felis. PLoS One. 2012; 7:e44612.
  • [64]Alves-Silva J, Ribeiro JM, Van Den Abbeele J, Attardo G, Hao Z et al.. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics. 2010; 11:213.
  • [65]Burnstock G, Wood JN. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol. 1996; 6:526-532.
  • [66]Tatei K, Cai H, Ip YT, Levine M. Race: a Drosophila homologue of the angiotensin converting enzyme. Mech Dev. 1995; 51:157-168.
  • [67]Taylor CA, Coates D, Shirras AD. The Acer gene of Drosophila codes for an angiotensin-converting enzyme homologue. Gene. 1996; 181:191-197.
  • [68]Wijffels G, Fitzgerald C, Gough J, Riding G, Elvin C et al.. Cloning and characterisation of angiotensin-converting enzyme from the dipteran species, Haematobia irritans exigua, and its expression in the maturing male reproductive system. Eur J Biochem. 1996; 237:414-423.
  • [69]Riviere G, Michaud A, Deloffre L, Vandenbulcke F, Levoye A et al.. Characterization of the first non-insect invertebrate functional angiotensin-converting enzyme (ACE): leech TtACE resembles the N-domain of mammalian ACE. Biochem J. 2004; 382:565-573.
  • [70]Robinson SD, Safavi-Hemami H, McIntosh LD, Purcell AW, Norton RS et al.. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One. 2014; 9:e87648.
  • [71]Safavi-Hemami H, Moller C, Mari F, Purcell AW. High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system. J Proteomics. 2013; 91:97-105.
  • [72]Castaneda O, Sotolongo V, Amor AM, Stocklin R, Anderson AJ et al.. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon. 1995; 33:603-613.
  • [73]Dauplais M, Lecoq A, Song J, Cotton J, Jamin N et al.. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997; 272:4302-4309.
  • [74]Rangaraju S, Khoo KK, Feng ZP, Crossley G, Nugent D et al.. Potassium channel modulation by a toxin domain in matrix metalloprotease 23. J Biol Chem. 2010; 285:9124-9136.
  • [75]von Reumont BM, Campbell LI, Richter S, Hering L, Sykes D et al.. A Polychaete’s powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol Evol. 2014; 6:2406-2423.
  • [76]Sunagar K, Johnson WE, O’Brien SJ, Vasconcelos V, Antunes A. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol. 2012; 29:1807-1822.
  • [77]Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004; 44:227-231.
  • [78]Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H et al.. Early evolution of the venom system in lizards and snakes. Nature. 2006; 439:584-588.
  • [79]Trevisan-Silva D, Gremski LH, Chaim OM, da Silveira RB, Meissner GO et al.. Astacin-like metalloproteases are a gene family of toxins present in the venom of different species of the brown spider (genus Loxosceles). Biochimie. 2010; 92:21-32.
  • [80]Sterchi EE, Stocker W, Bond JS. Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Aspects Med. 2008; 29:309-328.
  • [81]Chaim OM, Trevisan-Silva D, Chaves-Moreira D, Wille ACM, Pereira Ferrer V et al.. Brown Spider (Loxosceles genus) Venom Toxins: Tools for Biological Purposes. Toxins. 2011; 3:309-344.
  • [82]Chen SL, Li ZS, Fang WH. Theoretical investigation of astacin proteolysis. J Inorg Biochem. 2012; 111:70-79.
  • [83]Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J et al.. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007; 317:86-94.
  • [84]Yan L, Fei K, Zhang J, Dexter S, Sarras MP. Identification and characterization of hydra metalloproteinase 2 (HMP2): a meprin-like astacin metalloproteinase that functions in foot morphogenesis. Development. 2000; 127:129-141.
  • [85]Yokozawa Y, Tamai H, Tatewaki S, Tajima T, Tsuchiya T et al.. Cloning and biochemical characterization of astacin-like squid metalloprotease. J Biochem. 2002; 132:751-758.
  • [86]Brust A, Sunagar K, Undheim EA, Vetter I, Yang DC et al.. Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics. 2013; 12:651-663.
  • [87]Casewell NR, Harrison RA, Wuster W, Wagstaff SC. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genomics. 2009; 10:564.
  • [88]Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle SB. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon. 2011; 57:657-671.
  • [89]Gasanov SE, Dagda RK, Rael ED. Snake Venom Cytotoxins, Phospholipase As, and Zn-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. J Clin Toxicol. 2014; 4:1000181.
  • [90]Assumpcao TC, Charneau S, Santiago PB, Francischetti IM, Meng Z et al.. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res. 2011; 10:669-679.
  • [91]Assumpcao TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM et al.. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem Mol Biol. 2008; 38:213-232.
  • [92]Assumpcao TC, Ma D, Schwarz A, Reiter K, Santana JM et al.. Salivary antigen-5/CAP family members are Cu2 + -dependent antioxidant enzymes that scavenge O(2)(-). and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. J Biol Chem. 2013; 288:14341-14361.
  • [93]Milne TJ, Abbenante G, Tyndall JD, Halliday J, Lewis RJ. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J Biol Chem. 2003; 278:31105-31110.
  • [94]Qian J, Z-y G, C-w C. Cloning and isolation of a conus cysteine-rich protein homologous to Tex31 but without proteolytic activity. Acta Biochim Biophys Sin. 2008; 40:174-181.
  • [95]Fry BG, Roelants K, Norman JA. Tentacles of venom: toxic protein convergence in the Kingdom Animalia. J Mol Evol. 2009; 68:311-321.
  • [96]von Reumont BM, Blanke A, Richter S, Alvarez F, Bleidorn C et al.. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin. Mol Biol Evol. 2014; 31:48-58.
  • [97]Kurtovic T, Brgles M, Leonardi A, Lang Balija M, Sajevic T et al.. VaSP1, catalytically active serine proteinase from Vipera ammodytes ammodytes venom with unconventional active site triad. Toxicon. 2014; 77:93-104.
  • [98]Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta. 2003; 1638:1-19.
  • [99]Vollmayer P, Clair T, Goding JW, Sano K, Servos J et al.. Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. Eur J Biochem. 2003; 270:2971-2978.
  • [100]Zamecnik PC, Kim B, Gao MJ, Taylor G, Blackburn GM. Analogues of diadenosine 5′,5‴-P1, P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents. Proc Natl Acad Sci U S A. 1992; 89:2370-2373.
  • [101]Shiomi K, Kawashima Y, Mizukami M, Nagashima Y. Properties of proteinaceous toxins in the salivary gland of the marine gastropod (Monoplex echo). Toxicon. 2002; 40:563-571.
  • [102]Terrat Y, Biass D, Dutertre S, Favreau P, Remm M et al.. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors. Toxicon. 2012; 59:34-46.
  • [103]Anderluh G, Macek P. Dissecting the actinoporin pore-forming mechanism. Structure. 2003; 11:1312-1313.
  • [104]Garcia-Ortega L, Alegre-Cebollada J, Garcia-Linares S, Bruix M, Martinez-Del-Pozo A et al.. The behavior of sea anemone actinoporins at the water-membrane interface. Biochim Biophys Acta. 2011; 1808:2275-2288.
  • [105]Kawashima Y, Nagai H, Ishida M, Nagashima Y, Shiomi K. Primary structure of echotoxin 2, an actinoporin-like hemolytic toxin from the salivary gland of the marine gastropod Monoplex echo. Toxicon. 2003; 42:491-497.
  • [106]Kristan KC, Viero G, Dalla Serra M, Macek P, Anderluh G. Molecular mechanism of pore formation by actinoporins. Toxicon. 2009; 54:1125-1134.
  • [107]Olivera BM, Watkins M, Bandyopadhyay P, Imperial JS, de la Cotera EP et al.. Adaptive radiation of venomous marine snail lineages and the accelerated evolution of venom peptide genes. Ann N Y Acad Sci. 2012; 1267:61-70.
  • [108]Aguilar MB, de la Rosa RA, Falcon A, Olivera BM, Heimer de la Cotera EP. Peptide pal9a from the venom of the turrid snail Polystira albida from the Gulf of Mexico: purification, characterization, and comparison with P-conotoxin-like (framework IX) conoidean peptides. Peptides. 2009; 30:467-476.
  • [109]Chen JS, Fan CX, Hu KP, Wei KH, Zhong MN. Studies on conotoxins of Conus betulinus. J Nat Toxins. 1999; 8:341-349.
  • [110]Lirazan MB, Hooper D, Corpuz GP, Ramilo CA, Bandyopadhyay P et al.. The spasmodic peptide defines a new conotoxin superfamily. Biochemistry. 2000; 39:1583-1588.
  • [111]Imperial JS, Watkins M, Chen P, Hillyard DR, Cruz LJ et al.. The augertoxins: biochemical characterization of venom components from the toxoglossate gastropod Terebra subulata. Toxicon. 2003; 42:391-398.
  • [112]Watkins M, Hillyard DR, Olivera BM. Genes expressed in a turrid venom duct: divergence and similarity to conotoxins. J Mol Evol. 2006; 62:247-256.
  • [113]Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004; 84:1051-1095.
  • [114]Dutertre S, Drwal M, Laube B, Betz H. Probing the pharmacological properties of distinct subunit interfaces within heteromeric glycine receptors reveals a functional betabeta agonist-binding site. J Neurochem. 2012; 122:38-47.
  • [115]Biggs JS, Olivera BM, Kantor YI. Alpha-conopeptides specifically expressed in the salivary gland of Conus pulicarius. Toxicon. 2008; 52:101-105.
  • [116]Tavares-Dias M, Oliveira SR. A review of the blood coagulation system of fish. Revista Brasileira de Biociencias. 2009; 7:205-224.
  • [117]Chmelar J, Calvo E, Pedra JH, Francischetti IM, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteomics. 2012; 75:3842-3854.
  • [118]Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM et al.. Higher-level metazoan relationships: recent progress and remaining questions. Organisms Divers Evol. 2011; 11:151-172.
  • [119]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD et al.. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013; 8:1494-1512.
  • [120]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-410.
  • [121]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357-359.
  • [122]Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12:323.
  • [123]Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139-140.
  • [124]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M et al.. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21:3674-3676.
  • [125]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al.. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23:2947-2948.
  • [126]Wernersson R. Virtual Ribosome–a comprehensive DNA translation tool with support for integration of sequence feature annotation. Nucleic Acids Res. 2006; 34:W385-388.
  • [127]Kantor Y, Lozouet P, Puillandre N, Bouchet P. Lost and found: the Eocene family Pyramimitridae (Neogastropoda) discovered in the recent fauna of the Indo-Pacific. Zootaxa. 2014; 3754:239-276.
  • [128]Puillandre N, Kantor YI, Sysoev A, Couloux A, Meyer C et al.. The Dragon Tamed? A Molecular Phylogeny of the Conoidea (Gastropoda). J Molluscan Stud. 2011; 77:259-272.
  文献评价指标  
  下载次数:108次 浏览次数:20次