BMC Genetics | |
Genome-wide association study of antibody response to Newcastle disease virus in chicken | |
Dingming Shu1  Ning Li2  Xiaoxiang Hu2  Chunfen Yang1  Chunyu Li1  Jie Wang1  Jie Ma1  Hao Qu1  Chenglong Luo1  | |
[1] State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China;State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China | |
关键词: Genome-wide association study; Antibody response; Newcastle disease; Chicken; | |
Others : 1087070 DOI : 10.1186/1471-2156-14-42 |
|
received in 2012-09-01, accepted in 2013-05-06, 发布年份 2013 | |
【 摘 要 】
Background
Since the first outbreak in Indonesia in 1926, Newcastle disease has become one of the most common and contagious bird diseases throughout the world. To date, enhancing host antibody response by vaccination remains the most efficient strategy to control outbreaks of Newcastle disease. Antibody response plays an important role in host resistance to Newcastle disease, and selection for antibody response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in antibody response to Newcastle disease virus (NDV) is not clear. The aim of this study was to detect genes modulating antibody response to NDV by a genome-wide association study (GWAS) in chickens.
Results
To identify genes or chromosomal regions associated with antibody response to NDV after immunization, a GWAS was performed using 39,833 SNP markers in a chicken F2 resource population derived from a cross between two broiler lines that differed in their resistance. Two SNP effects reached 5% Bonferroni genome-wide significance (P<1.26×10-6). These two SNPs, rs15354805 and rs15355555, were both on chicken (Gallus gallus) chromosome 1 and spanned approximately 600 Kb, from 100.4 Mb to 101.0 Mb. Rs15354805 is in intron 7 of the chicken Roundabout, axon guidance receptor, homolog 2 (ROBO2) gene, and rs15355555 is located about 243 Kb upstream of ROBO2. Rs15354805 explained 5% of the phenotypic variation in antibody response to NDV, post immunization, in chickens. Rs15355555 had a similar effect as rs15354805 because of its linkage disequilibrium with rs15354805 (r2=0.98).
Conclusion
The region at about 100 Mb from the proximal end of chicken chromosome 1, including the ROBO1 and ROBO2 genes, has a strong effect on the antibody response to the NDV in chickens. This study paves the way for further research on the host immune response to NDV.
【 授权许可】
2013 Luo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150116022513164.pdf | 1720KB | download | |
Figure 2. | 208KB | Image | download |
Figure 1. | 89KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Alexander DJ: Newcastle disease. Br Poult Sci 2001, 42(1):5-22.
- [2]Ababneh MM, Dalab AE, Alsaad SR: Al-Zghoul MB. Al-Natour MQ: Molecular characterization of a recent Newcastle disease virus outbreak in Jordan. Res Vet Sci; 2012.
- [3]Aldous EW, Manvell RJ, Cox WJ, Ceeraz V, Harwood DG, Shell W, Alexander DJ, Brown IH: Outbreak of Newcastle disease in pheasants (Phasianus colchicus) in south-east England in July 2005. Vet Rec 2007, 160(14):482-484.
- [4]Irvine RM, Aldous EW, Manvell RJ, Cox WJ, Ceeraz V, Fuller CM, Wood AM, Milne JC, Wilson M, Hepple RG: Outbreak of Newcastle disease due to pigeon paramyxovirus type 1 in grey partridges (Perdix perdix) in Scotland in October 2006. Vet Rec 2009, 165(18):531-535.
- [5]Dortmans JC, Peeters BP, Koch G: Newcastle disease virus outbreaks: vaccine mismatch or inadequate application? Vet Microbiol 2012, 160(1–2):17-22.
- [6]Miller PJ, Decanini EL, Afonso CL: Newcastle disease: evolution of genotypes and the related diagnostic challenges. Infect Genet Evol 2010, 10(1):26-35.
- [7]Villegas P: Viral diseases of the respiratory system. Poult Sci 1998, 77(8):1143-1145.
- [8]Pitcovski J, Cahaner A, Heller ED, Zouri T, Gutter B, Gotfried Y, Leitner G: Immune response and resistance to infectious bursal disease virus of chicken lines selected for high or low antibody response to Escherichia coli. Poult Sci 2001, 80(7):879-884.
- [9]Gross WG, Siegel PB, Hall RW, Domermuth CH, DuBoise RT: Production and persistence of antibodies in chickens to sheep erythrocytes. 2. Resistance to infectious diseases. Poult Sci 1980, 59(2):205-210.
- [10]Biscarini F, Bovenhuis H, van Arendonk JA, Parmentier HK, Jungerius AP, van der Poel JJ: Across-line SNP association study of innate and adaptive immune response in laying hens. Anim Genet 2010, 41(1):26-38.
- [11]Yonash N, Cheng HH, Hillel J, Heller DE, Cahaner A: DNA microsatellites linked to quantitative trait loci affecting antibody response and survival rate in meat-type chickens. Poult Sci 2001, 80(1):22-28.
- [12]Groenen MA, Megens HJ, Zare Y, Warren WC, Hillier LW, Crooijmans RP, Vereijken A, Okimoto R, Muir W, Cheng HH: The development and characterization of a 60K SNP chip for chicken. BMC Genomics 2011, 12(1):274. BioMed Central Full Text
- [13]Xie L, Luo C, Zhang C, Zhang R, Tang J, Nie Q, Ma L, Hu X, Li N, Da Y: Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits. PLoS One 2012, 7(2):e30910.
- [14]Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, Li H, Chen K, Ye S, Ge C: Genome-wide association study of body weight in chicken F2 resource population. PLoS One 2011, 6(7):e21872.
- [15]Soller M, Heller D, Peleg B, Ron-Kuper N, Hornstein K: Genetic and phenotypic correlations between immune response to Escherichia coli and to Newcastle disease virus vaccines. Poult Sci 1981, 60(1):49-53.
- [16]Lwelamira J, Kifaro GC, Gwakisa PS: Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes. Trop Anim Health Prod 2009, 41(1):51-59.
- [17]Lwelamira J: Phenotypic and genetic parameters for body weights and antibody response against Newcastle disease virus (NDV) vaccine for Kuchi chicken ecotype of Tanzania under extensive management. Trop Anim Health Prod 2012, 44(7):1529-1534.
- [18]Ioannidis JP, Thomas G, Daly MJ: Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 2009, 10(5):318-329.
- [19]Chapman SJ, Hill AV: Human genetic susceptibility to infectious disease. Nat Rev Genet 2012, 13(3):175-188.
- [20]Fruci D, Benevolo M, Cifaldi L, Lorenzi S, Lo ME, Tremante E, Giacomini P: Major histocompatibility complex class i and tumour immuno-evasion: how to fool T cells and natural killer cells at one time. Curr Oncol 2012, 19(1):39-41.
- [21]Westerdahl H, Asghar M, Hasselquist D, Bensch S: Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex. Proc Biol Sci 2012, 279(1728):577-584.
- [22]Sumners LH, Cox CM, Kim S, Salevsky JE, Siegel PB, Dalloul RA: Immunological responses to Clostridium perfringens alpha-toxin in two genetically divergent lines of chickens as influenced by major histocompatibility complex genotype. Poult Sci 2012, 91(3):592-603.
- [23]National Center for Biotechnology Information Entrez gene; 2011. Available: http://www.ncbi.nlm.nih.gov webcite
- [24]Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M: Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 2004, 42(2):213-223.
- [25]Jia L, Cheng L, Raper J: Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 2005, 282(2):411-421.
- [26]Dugan JP, Stratton A, Riley HP, Farmer WT, Mastick GS: Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals. Mol Cell Neurosci 2011, 46(1):347-356.
- [27]Mastick GS, Farmer WT, Altick AL, Nural HF, Dugan JP, Kidd T, Charron F: Longitudinal axons are guided by Slit/Robo signals from the floor plate. Cell Adh Migr 2010, 4(3):337-341.
- [28]Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL: Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 2003, 424(6947):398-405.
- [29]Helmuth L: NEUROSCIENCE: Immune Molecules Prune Neural Links. Science 2000, 290(5499):2051a.
- [30]Ransohoff RM, Brown MA: Innate immunity in the central nervous system. J Clin Invest 2012, 122(4):1164-1171.
- [31]Kitamura H, Kobayashi M, Wakita D, Nishimura T: Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. J Immunol 2012, 188(9):4200-4208.
- [32]Roney KE, O'Connor BP, Wen H, Holl EK, Guthrie EH, Davis BK, Jones SW, Jha S, Sharek L, Garcia-Mata R: Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation. PLoS One 2011, 6(9):e24795.
- [33]Ypsilanti AR, Zagar Y, Chedotal A: Moving away from the midline: new developments for Slit and Robo. Development 2010, 137(12):1939-1952.
- [34]Guo F, Cancelas JA, Hildeman D, Williams DA, Zheng Y: Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood 2008, 112(5):1767-1775.
- [35]Guo F, Zhang S, Tripathi P, Mattner J, Phelan J, Sproles A, Mo J, Wills-Karp M, Grimes HL, Hildeman D: Distinct roles of Cdc42 in thymopoiesis and effector and memory T cell differentiation. PLoS One 2011, 6(3):e18002.
- [36]Smits K, Iannucci V, Stove V, Van Hauwe P, Naessens E, Meuwissen PJ, Arien KK, Bentahir M, Plum J, Verhasselt B: Rho GTPase Cdc42 is essential for human T-cell development. Haematologica 2010, 95(3):367-375.
- [37]Fernandis AZ, Ganju RK: Slit: a roadblock for chemotaxis. Sci STKE 2001, 2001(91):e1.
- [38]Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Z, Zhang X, Rao Y: The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 2001, 410(6831):948-952.
- [39]Tole S, Mukovozov IM, Huang YW, Magalhaes MA, Yan M, Crow MR, Liu GY, Sun CX, Durocher Y, Glogauer M: The axonal repellent, Slit2, inhibits directional migration of circulating neutrophils. J Leukoc Biol 2009, 86(6):1403-1415.
- [40]Nimmanapalli R, Sharmila C, Reddy PG: Immunomodulation of caprine lentiviral infection by interleukin-16. Comp Immunol Microbiol Infect Dis 2010, 33(6):529-536.
- [41]Rasooly R, Schuster GU, Gregg JP, Xiao JH, Chandraratna RA, Stephensen CB: Retinoid x receptor agonists increase bcl2a1 expression and decrease apoptosis of naive T lymphocytes. J Immunol 2005, 175(12):7916-7929.
- [42]Comerci CJ, Mace EM, Banerjee PP, Orange JS: CD2 Promotes Human Natural Killer Cell Membrane Nanotube Formation. PLoS One 2012, 7(10):e47664.
- [43]Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD: The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol 2009, 185(3):521-534.
- [44]Kalland ME, Oberprieler NG, Vang T, Tasken K, Torgersen KM: T cell-signaling network analysis reveals distinct differences between CD28 and CD2 costimulation responses in various subsets and in the MAPK pathway between resting and activated regulatory T cells. J Immunol 2011, 187(10):5233-5245.
- [45]Meinl E, Lengenfelder D, Blank N, Pirzer R, Barata L, Hivroz C: Differential requirement of ZAP-70 for CD2-mediated activation pathways of mature human T cells. J Immunol 2000, 165(7):3578-3583.
- [46]Good-Jacobson KL, Song E, Anderson S, Sharpe AH, Shlomchik MJ: CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J Immunol 2012, 188(9):4217-4225.
- [47]Lim TS, Goh JK, Mortellaro A, Lim CT, Hammerling GJ, Ricciardi-Castagnoli P: CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS One 2012, 7(9):e45185.
- [48]Perez N, Karumuthil-Melethil S, Li R, Prabhakar BS, Holterman MJ, Vasu C: Preferential costimulation by CD80 results in IL-10-dependent TGF-beta1(+) -adaptive regulatory T cell generation. J Immunol 2008, 180(10):6566-6576.
- [49]Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN: The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 2001, 102(2):173-179.
- [50]Holt PG, Strickland DH: The CD200-CD200R axis in local control of lung inflammation. Nat Immunol 2008, 9(9):1011-1013.
- [51]Rygiel TP, Rijkers ES, de Ruiter T, Stolte EH, van der Valk M, Rimmelzwaan GF, Boon L, van Loon AM, Coenjaerts FE, Hoek RM: Lack of CD200 enhances pathological T cell responses during influenza infection. J Immunol 2009, 183(3):1990-1996.
- [52]Zhu YX, Benn S, Li ZH, Wei E, Masih-Khan E, Trieu Y, Bali M, McGlade CJ, Claudio JO, Stewart AK: The SH3-SAM adaptor HACS1 is up-regulated in B cell activation signaling cascades. J Exp Med 2004, 200(6):737-747.
- [53]Dorshorst BJ, Siegel PB, Ashwell CM: Genomic regions associated with antibody response to sheep red blood cells in the chicken. Anim Genet 2011, 42(3):300-308.
- [54]Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S: Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464(7288):587-591.
- [55]Illumina: Infinium® genotyping data analysis 2010. http://www.illumina.com/Documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf webcite
- [56]Ensembl Genome Browser: Ensembl release 63. 2011. Available: http://useast.ensembl.org/index.html webcite
- [57]Gilmour AR, Thompson R, Cullis BR: Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometrics 1995, 51(4):1440-1450.
- [58]Madsen P, SO Rensen P, Su G, Damgaard LH, Thomsen H, Labouriau R: DMU - a package for analyzing multivariate mixed models. Belo Horizonte, Minas Gerais, Brazil: Proc. 8th World Congr. Genet. Appl. Livest. Prod; 2006:11-27.
- [59]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
- [60]Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, Sulem P, Thorlacius S, Gylfason A, Steinberg S: Many sequence variants affecting diversity of adult human height. Nat Genet 2008, 40(5):609-615.
- [61]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.
- [62]Dennis GJ, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4(5):P3. BioMed Central Full Text
- [63]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
- [64]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
- [65]Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR: GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 2002, 31(1):19-20.