| BMC Evolutionary Biology | |
| Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology | |
| Tatiana A Rynearson2  Robert J Olson1  Dayna R Rignanese2  Kerry A Whittaker2  | |
| [1] Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA;Graduate School of Oceanography, South Ferry Road, University of Rhode Island, Narragansett, RI 02882, USA | |
| 关键词: Intraspecific diversity; Physiology; Dispersal; Phylogeography; Phytoplankton; | |
| Others : 1140110 DOI : 10.1186/1471-2148-12-209 |
|
| received in 2011-12-29, accepted in 2012-09-22, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Marine phytoplankton drift passively with currents, have high dispersal potentials and can be comprised of morphologically cryptic species. To examine molecular subdivision in the marine diatom Thalassiosira rotula, variations in rDNA sequence, genome size, and growth rate were examined among isolates collected from the Atlantic and Pacific Ocean basins. Analyses of rDNA included T. gravida because morphological studies have argued that T. rotula and T. gravida are conspecific.
Results
Culture collection isolates of T. gravida and T. rotula diverged by 7.0 ± 0.3% at the ITS1 and by 0.8 ± 0.03% at the 28S. Within T. rotula, field and culture collection isolates were subdivided into three lineages that diverged by 0.6 ± 0.3% at the ITS1 and 0% at the 28S. The predicted ITS1 secondary structure revealed no compensatory base pair changes among lineages. Differences in genome size were observed among isolates, but were not correlated with ITS1 lineages. Maximum acclimated growth rates of isolates revealed genotype by environment effects, but these were also not correlated with ITS1 lineages. In contrast, intra-individual variation in the multi-copy ITS1 revealed no evidence of recombination amongst lineages, and molecular clock estimates indicated that lineages diverged 0.68 Mya. The three lineages exhibited different geographic distributions and, with one exception, each field sample was dominated by a single lineage.
Conclusions
The degree of inter- and intra-specific divergence between T. gravida and T. rotula suggests they should continue to be treated as separate species. The phylogenetic distinction of the three closely-related T. rotula lineages was unclear. On the one hand, the lineages showed no physiological differences, no consistent genome size differences and no significant changes in the ITS1 secondary structure, suggesting there are no barriers to interbreeding among lineages. In contrast, analysis of intra-individual variation in the multicopy ITS1 as well as molecular clock estimates of divergence suggest these lineages have not interbred for significant periods of time. Given the current data, these lineages should be considered a single species. Furthermore, these T. rotula lineages may be ecologically relevant, given their differential abundance over large spatial scales.
【 授权许可】
2012 Whittaker et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150324093751195.pdf | 1063KB | ||
| Figure 6. | 44KB | Image | |
| 76KB | Image | ||
| Figure 4. | 25KB | Image | |
| Figure 3. | 24KB | Image | |
| Figure 2. | 39KB | Image | |
| Figure 1. | 44KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 6.
【 参考文献 】
- [1]Laisk A, Nedbal L, Govindjee , Friend AD, Geider RJ, Behrenfeld MJ, Still CJ: Photosynthesis in Global-Scale Models. In Photosynthesis in silico. 29th edition. Edited by Govindjee . Netherlands: Springer Netherlands; 2009:465-497.
- [2]Field CB: Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Sci 1998, 281(5374):237-240.
- [3]Simpson BB: Glacial migrations of plants: island biogeographical evidence. Sci 1974, 185(4152):698-700.
- [4]Bolker BM, Pacala SW: Spatial Moment Equations for Plant Competition: Understanding Spatial Strategies and the Advantages of Short Dispersal. Am Nat 1999, 153(6):575-602.
- [5]Sanmartin I, Ronquist F: Southern Hemisphere Biogeography Inferred by Event-Based Models: Plant versus Animal Patterns. Syst Biol 2004, 53(2):216-243.
- [6]Burger WC: Why are there so many kinds of flowering plants? Bioscience 1981, 31(8):572.
- [7]Simon N, Cras A-L, Foulon E, Lemee R: Diversity and evolution of marine phytoplankton. C R Biol 2009, 332(2–3):159.
- [8]Kinlan BP, Gains SD: Propagule dispersal in marine and terrestrial environments: a community perspective. Ecol 2003, 84(8):2007-2020.
- [9]Carr MH, Neigel JE, Estes JA, Andelman S, Warner RR, Largier JL: Comparing Marine and Terrestrial Ecosystems: Implications for the Design of Coastal Marine Reserves. Ecol Appl 2003, 13(1):S90-S107.
- [10]Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B: Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycle 1995, 9(3):359-372.
- [11]Mann DG, Droop SJM: 3. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 1996, 336(1):19.
- [12]Sorhannus U: A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 2007, 65(1–2):1-12.
- [13]Round F, Crawford R, Mann D: The Diatoms: biology and morphology of the genera. Cambridge, UK: Cambridge University Press; 1990.
- [14]Poulickova A, Vesela J, Neustupa J, Skaloud P: Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kutz. (Bacillariophyceae) and morphologically similar taxa. Protist 2010, 161:353-369.
- [15]Amato A, Kooistra WHCF, Levialdi Ghiron JH, Mann DG, Proschold T, Montresor M: Reproductive Isolation among Sympatric Cryptic Species in Marine Diatoms. Protist 2007, 158(2):193-207.
- [16]Ellegaard M, Godhe A, Härnström K, McQuoid M: The species concept in a marine diatom: LSU rDNA- based phylogenetic differentiation in Skeletonema marinoi/dohrnii (Bacillariophyceae) is not reflected in morphology. Phycologia (Oxford) 2008, 47(2):156-167.
- [17]Alverson AJ: Molecular systematics and the diatom species. Protist 2008, 159(3):339-353.
- [18]Sarno D, Kooistra W, Medlin L, Percopo I, Zingone A: Diversity in the genus Skeletonema (Bacillariophyceae). An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol 2005, 41(1):151-176.
- [19]Zingone A, Percopo I, Sims PA, Sarno D: Diversity in the genus Skeletonema (Bacillariophyceae). I. A reexamination of the type material of S. costatum with the description of S. grevillei sp. J Phycol 2005, 41(1):140-150.
- [20]Sarno D, Kooistra WHCF, Balzano S, Hargraves PE, Zingone A: Diversity in the genus Skeletonema (Bacillariophyceae) III. Phylogenetic position and mophological variability of Skeletonema grevillei, with the description of Skeletonema ardens sp. J Phycol 2007, 43(1):156-170.
- [21]Evans KM, Wortley AH, Mann DG: An sssessment of potential diatom barcode genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 2007, 158(3):349-364.
- [22]Moniz MB, Kaczmarska I: Barcoding micro- and meso-fauna. Barcoding diatoms: Is there a good marker? Mol Ecol Resour 2009, 9(1):65-74.
- [23]Coleman AW: ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 2003, 19(7):370.
- [24]Coleman AW: The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 2000, 151(1):1-9.
- [25]Behnke A, Friedl T, Chepurnov VA, Mann DG: Reproductive compatibility and rDNA sequence analysis in the Sellaphora pupula species complex (Bacillariophyta). J Phycol 2004, 40(1):193-208.
- [26]Schlötterer C, Hauser M-T, von Haesler A, Tautz D: Comparative evolutionary analysis of rDNA ITS regions in drosophila. Mol Biol Evol 1994, 11:513-533.
- [27]Ellegaard M, Godhe A, Härnstrom K, McQuoid M: The species concept in a marine diatom: LSU rDNA based phylogenetic differentiation in Skeletonema marinoi/dohrnii (Bacillariophyceae) is not reflected in morphology. Phycologia (Oxford) 2008, 47(2):156-167.
- [28]Koester JA, Swalwell JE, von Dassow P, Armbrust EV: Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta). BMC Evol Biol 2010, 10:1. BioMed Central Full Text
- [29]Von Dassow P, Petersen TW, Chepernov VA, Armbrust EV: Inter-and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J Phycol 2008, 44(2):335-349.
- [30]Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH: The frequency of polyploid speciation in vascular plants. PNAS 2009, 106(33):13875-13879.
- [31]Smayda TJ: Biogeographical studies of marine phytoplankton. Oikos 1958, 9(2):158.
- [32]Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA, Zingone A: Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 2008, 159(2):177.
- [33]Hubbard KA, Rocap GE, Armbrust V: Inter and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol 2008, 44(3):637-649.
- [34]Casteleyn G, Chepurnov VA, Leliaert F, Mann DG, Stephen S, Bates SS, Lundholm N, Rhodes L, Sabbe K, Vyverman W: Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species? Harmful Algae 2008, 7(2):241.
- [35]Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, Shea DM: Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 2006, 442(7106):1025-1028.
- [36]Cermeno P, de Vargas C, Abrantes F, Falkowski PG: Phytoplankton biogeography and community stability in the ocean. PLoS One 2010, 5(4):10037.
- [37]Hallegraeff GM: Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 2010, 46(2):220-235.
- [38]Brockmann U, Eberlein K, Hentzschel G, Schöne H, Siebers D, Wandschneider K, Weber A: Parallel plastic tank experiments with cultures of marine diatoms. Helgol Mar Res 1977, 30(1):201-216.
- [39]Hasle GR: The biogeography of some marine planktonic diatoms. Deep Sea Res Oceanograph Abstr 1976, 23(4):319-338. IN311-IN316
- [40]Bursa A: Phytoplankton of the Calanus expedition in Hudson Bay, 1953 and 1954. J Fish Res Bd Can 1961, 18:51-83.
- [41]Cassie V: Seasonal changes in diatoms and dinoflagellates of the east coast of New Zealand during 1957 and 1958. NZJSci 1960, 3:137-172.
- [42]Matsudaira Y: Cooperative studies on primary production in coastal waters of Japan 1962–1963. Inform Bull Planktol Japan 1964, 11:24-73.
- [43]Pratt DM: The phytoplankton of Narragansett Bay. Limnol Oceanogr 1959, 4(4):425.
- [44]Krawiec RW: Autecology and clonal variability of the marine centric diatom Thalassiosira rotula; (Bacillariophyceae) in response to light, temperature and salinity. Mar Biol 1982, 69(1):79-89.
- [45]Smayda TJ: Phytoplankton studies in lower Narragansett Bay. Limnol Oceanogr 1957, 2(4):342.
- [46]Gran H, Thompson T: The diatoms and the physical and chemial conditions of the seawater of the San Juan Archipelago. Puget Sound Biol 1930, 7:169-204.
- [47]Meunier A: Microplancton des Mers de Berents et de Kara. Duc d'Orleans Champagne Artique de 1907, 1910(Atlas of pls I-XXXVII):1-355.
- [48]Cleve PT: Redogörelse för de svenska hydrografiska undersökningarne februari 1896 V. Planktonundersökningar: Vegetabilskt plankton. Bihang till Kungliga Svenska Vetenskapsakademiens Handlingar 1896, 22(5):1-33.
- [49]Syvertsen EE: Thalassiosira rotula and T. gravida: ecology and morphology. Nova Hedwigia Beihefte 1977, 57:99-112.
- [50]Sar EA, Sunesen I, Lavigne AS, Lofeudo S: Thalassiosira rotula, a heterotypic synonym of Thalassiosira gravida: morphological evidence. Diatom Res 2011, 26(1):109-119.
- [51]Guillard RR: Culture of phytoplankton for feeding marine invertebrates. Plenum Book Publ. Corp., New York; 1975. In: W. L. Smith and M. H. Chanley, eds., Culture of marine invertebrate animals. P. 29-60
- [52]Rynearson TA, Newton JA, Armbrust EV: Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii. Limnol Oceanogr 2006, 51(3):1249.
- [53]Medlin L, Elwood HJ, Stickel S, Sogin ML: The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1988, 71(2):491-499.
- [54]Auwera GVD, Wachter RD: Structure of the large subunit rDNA from a diatom, and comparison between small and large subunit ribosomal RNA for studying stramenopile evolution. J Eukaryot Microbiol 1998, 45(5):521-527.
- [55]Rynearson TA, Armbrust EV: Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J Phycol 2004, 40(1):34-43.
- [56]Armbrust EV, Galindo HM: Rapid evolution of a sexual reproduction gene in centric diatoms of the genus Thalassiosira. Appl Environ Microbiol 2001, 67(8):3501-3513.
- [57]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
- [58]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
- [59]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16(2):111-120.
- [60]Raymond M, Rousset F: An exact test for population differentiation. Evolution 1995, 49(6):1280.
- [61]Excoffier L, Laval LG, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47.
- [62]Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure1. J Mol Biol 1999, 288(5):911.
- [63]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26(19):2462-2463.
- [64]Rynearson TA, Armbrust EV: DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr 2000, 45(6):1329-1340.
- [65]Brand LE, Guillard RRL, Murphy LS: A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res 1981, 3(2):193-201.
- [66]Enderlein G, Scheffé H: The Analysis of Variance. Wiley, New York 1959, 477 Seiten. Biom Z 1961, 3(2):143-144.
- [67]Tukey JW: One degree of freedom for non-additivity. Biometrics 1949, 5(3):232-242.
- [68]Olson RJ, Sosik HM: A submersible imaging-in-flow instrument to analyze nano and mciroplankton: Imaging FlowCytobot. Limnol Oceanogr Meth 2007, 5:195-203.
- [69]Coleman AW: Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 2007, 35(10):3322-3329.
- [70]Thornhill DJ, Lord JB: Secondary structure models for the internal transcribed spacer (ITS) region 1 from symbiotic dinoflagellates. Protist 2010, 161(3):434-451.
- [71]Casteleyn G, Chepurnov VA, Leliaert F, Mann DG, Bates SS, Lundholm N, Rhodes L, Sabbe K, Vyverman W: Pseudo-nitzschia pungens (Bacillariophyceae): A cosmopolitan diatom species? Harmful Algae 2008, 7(2):241-257.
- [72]Hegarty M, Hiscock S: Polyploidy: Doubling up for evolutionary success. Curr Biol 2007, 17(21):R927-R929.
- [73]Hegarty MJ, Hiscock SJ: Genomic clues to the evolutionary success of polyploid plants. Curr Biol 2008, 18(10):R435-R444.
- [74]Otto SP: The evolutionary consequences of polyploidy. Cell 2007, 131(3):452.
- [75]Otto SP: In polyploids, one plus one does not equal two. Trends Ecol Evol 2003, 18(9):431.
- [76]Hartl D, Clark A: Principles of Population Genetics. Sunderland, MA: Sinauer Associates; 1998.
- [77]D'Alelio D, D'Alcala MR, Dubroca L, Sarno D, Zingone A, Montresor M: The time for sex: A biennial life cycle in a marine planktonic diatom. Limnol Oceanogr 2010, 55(1):106-114.
- [78]Davidovich NA, Bates SS: Sexual reproduction in the pennate diatoms Pseudo-nitzschia multiseries and P. pseudodelicatissima (Ballicariophyceae). J Phycol 1998, 34(1):126-137.
- [79]Crawford RM: The role of sex in the sedimentation of a marine diatom bloom. Limnol Oceanogr 1995, 40:200-204.
- [80]Waite A, Harrison PJ: The role of sinking and ascent during sexual reproduction in the marine diatom Ditylum brightwellii. Mar Ecol Prog Ser 1992, 87:113-122.
- [81]Lewis WM Jr: The diatom sex clock and its evolutionary significance. Am Nat 1984, 123(1):73-80.
- [82]Casteleyn G, Leliaert F, Backeljau T, Debeer A-E, Kotaki Y, Rhodes L, Lundholm N, Sabbe K, Vyverman W: Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci 2010, 107(29):12952-12957.
- [83]Palumbi SR: Genetic divergence, reproductive Isolation, and marine Speciation. Annu Rev Ecol Syst 1994, 25(1):547-572.
- [84]Chiang TY, Schaal BA: Phylogeography of North American populations of the moss species Hylocomium splendens based on the nucleotide sequence of internal transcribed spacer 2 of nuclear ribosomal DNA. Mol Ecol 1999, 8(6):1037-1042.
- [85]Sork VL, Nason J, Campbell DR, Fernandez JF: Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 1999, 14(6):219-224.
- [86]Rynearson TA, Lin EO, Armbrust EV: Metapopulation Structure in the Planktonic Diatom Ditylum brightwellii (Bacillariophyceae). Protist 2009, 160(1):111-121.
- [87]Eppley RW: Temperature and phytoplankton growth in the sea. Fishery Bull (Washington DC) 1972, 70(4):1063.
- [88]Platt T, Jassby AD: The relationship between photosynthesis and light for natural assemblages of coastal marine plankton. J Phycol 1976, 12(4):421-430.
- [89]Ryther JH, Yentsch CS: The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol Oceanogr 1957, 2(3):281-286.
- [90]Brand LE: Genetic variability in reprodution rates in marine phytoplankton populations. Evolution 1981, 35(6):1117-1127.
- [91]Falconer DS: The Problem of Environment and Selection. Am Nat 1952, 86(830):293-298.
- [92]Evans KM: High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzchia pungens (Bacillariophyceae) populations. J Phycol 2005, 41(3):506-514.
- [93]Iglesias-Rodriguez MD, Schofield OM, Batley J, Medlin LK, Hayes PK: Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. J Phycol 2006, 42:525-536.
- [94]Härnström K, Ellegaard M, Andersen TJ, Godhe A: Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci 2011, 108(10):4252-4257.
- [95]Garrison DL: Monterey Bay phytoplankton. II. Resting spore cycles in coastal diatom populations. J Plankton Res 1981, 3(1):137-156.
- [96]Karentz D, Smayda TJ: Temperature and seasonal occurence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1969–1980.). Mar Ecol Prog Ser 1984, 18:277-293.
- [97]McQuoid MR, Hobson LA: Importance of resting stages in diatom seasonal succession. J Phycol 1995, 31(1):44-50.
- [98]McQuoid MR, Hobson LA: Diatom resting stages. J Phycol 1996, 32(6):889-902.
- [99]Mann DG: The species concept in diatoms. Phycologia 1999, 38(6):437-495.
PDF