期刊论文详细信息
BMC Research Notes
Evolution and homoplasy at the Bem6 microsatellite locus in three sweetpotato whitefly (Bemisia tabaci) cryptic species
Cindy L Mckenzie1  Robert G Shatters1  Paula M Hall2  Aaron M Dickey3 
[1] USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Rd, Fort Pierce, FL 34945, USA;Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd, Apopka, FL 32703, USA;Current address: Mid-Florida Research & Education Center, University of Florida, 2725 Binion Rd, Apopka, FL 32703, USA
关键词: Bemisia tabaci;    Stepwise mutation;    Compound microsatellite;    Homoplasy;    Tandem repeat;   
Others  :  1142299
DOI  :  10.1186/1756-0500-6-249
 received in 2013-03-21, accepted in 2013-06-26,  发布年份 2013
PDF
【 摘 要 】

Background

The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within species homoplasy can lead to an underestimate of differentiation among populations and among species homoplasy can produce a misleading interpretation regarding shared alleles and hybridization. This is especially problematic with cryptic species.

Results

By sequencing alleles from three cryptic species of the sweetpotato whitefly (Bemisia tabaci), designated MEAM1, MED, and NW, the evolution of the putatively dinucleotide Bem6 (CA8)imp microsatellite locus is inferred as one of primarily stepwise mutation occurring at four distinct heptaucleotide tandem repeats. In two of the species this pattern yields a compound tandem repeat. Homoplasy was detected both among species and within species.

Conclusions

In the absence of sequencing, size homoplasious alleles at the Bem6 locus lead to an overestimate of alleles shared and hybridization among cryptic species of Bemisia tabaci. Furthermore, the compound heptanucleotide motif structure of a putative dinucleotide microsatellite has implications for the nomenclature of heptanucleotide tandem repeats with step-wise evolution.

【 授权许可】

   
2013 Dickey et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328025452451.pdf 1349KB PDF download
Figure 4. 29KB Image download
Figure 3. 34KB Image download
Figure 2. 31KB Image download
Figure 1. 10KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Sager R, Ishida MR: Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 1963, 50(4):725-730.
  • [2]Britten RJ, Kohne DE: Repeated sequences in DNA. Science 1968, 161:529-540.
  • [3]Tautz D: Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In DNA Fingerprinting: State of the Science, Volume 67. Edited by Chakraborty R, Epplen JT, Jeffreys AJ. Basel, Switzerland: Birkhauser Verlag; 1993:21-28.
  • [4]Dean C, Schmidt R: Plant genomes: a current molecular description. Annu Rev Plant Biol 1995, 46(1):395-418.
  • [5]Navajas-Perez R, Paterson AH: Patterns of tandem repetition in plant whole genome assemblies. Mol Genet Genomics 2009, 281(6):579-590.
  • [6]Tamaki K: Minisatellite and microsatellite DNA typing analysis. In Molecular forensics. Edited by Rapley R, Whitehouse D. Chichester, U.K: John Wiley & Sons; 2007:71-89.
  • [7]Fondon JW III, Hammock EAD, Hannan AJ, King DG: Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 2008, 31(7):328-334.
  • [8]Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, et al.: Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 1987, 235(4796):1616-1622.
  • [9]Tautz D, Renz M: Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 1984, 12(10):4127-4138.
  • [10]Litt M, Luty JA: A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 1989, 44(3):397-401.
  • [11]Jeffreys AJ, Wilson V, Thein SL: Hypervariable ‘minisatellite’ regions in human DNA. Nature 1985, 314:67-73.
  • [12]Weber JL, Wong C: Mutation of human short tandem repeats. Hum Mol Genet 1993, 2(8):1123-1128.
  • [13]Schug MD, Mackay TFC, Aquadro CF: Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat Genet 1997, 15(1):99-102.
  • [14]Baer CF, Miyamoto MM, Denver DR: Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007, 8:619-631.
  • [15]Levinson G, Gutman GA: Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 1987, 4(3):203-221.
  • [16]Ellegren H: Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004, 5(6):435-445.
  • [17]Jeffreys AJ, Neil DL, Neumann R: Repeat instability at human minisatellites arising from meiotic recombination. EMBO J 1998, 17(14):4147-4157.
  • [18]Richard GF, Paques F: Mini-and microsatellite expansions: the recombination connection. EMBO Rep 2000, 1(2):122-126.
  • [19]Brinkmann B, Klintschar M, Neuhuber F, Hohne J, Rolf B: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 1998, 62(6):1408-1415.
  • [20]Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD: The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 2008, 18(1):30-38.
  • [21]Primmer CR, Saino N, Muller AP, Ellegren H, others: Directional evolution in germline microsatellite mutations. Nat Genet 1996, 13(4):391.
  • [22]Buschiazzo E, Gemmell NJ: The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 2006, 28(10):1040-1050.
  • [23]Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, Liu YZ, Li JL, Recker RR, Deng HW: Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genet 2002, 70(3):625-634.
  • [24]Nauta MJ, Weissing FJ: Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 1996, 143(2):1021-1032.
  • [25]Grimaldi MC, Crouau-Roy B: Microsatellite allelic homoplasy due to variable flanking sequences. J Mol Evol 1997, 44(3):336-340.
  • [26]Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A: Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 1998, 15(10):1275-1287.
  • [27]De Barro PJ, Liu SS, Boykin LM, Dinsdale AB: Bemisia tabaci: a statement of species status. Annu Rev Entomol 2011, 56:1-19.
  • [28]Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P, Dinsdale A: Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 2010, 103:196-208.
  • [29]Perring TM: The Bemisia tabaci species complex. Crop Prot 2001, 20:725-737.
  • [30]Dennehy TJ, Decain BA, Harpold VS, Zaborac M, Morin S, Fabrick JA, Nichols RL, Brown JK, Byrne FJ, Xianchun LI: Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the New World. J Econ Entomol 2010, 103:2174-2185.
  • [31]McKenzie CL, Hodges G, Osborne LS, Byrne FJ, Shatters RG Jr: Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Florida-investigating the Q invasion. J Econ Entomol 2009, 102(2):670-676.
  • [32]Elbaz M, Lahav N, Morin S, Elbaz M: Evidence for pre-zygotic reproductive barrier between the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 2010, 100:581-590.
  • [33]Sun DB, Xu J, Luan JB, Liu SS: Reproductive incompatibility between the B and Q biotypes of the whitefly Bemisia tabaci in China: genetic and behavioral evidence. Bull Entomol Res 2011, 101(2):211-220.
  • [34]McKenzie CL, Bethke J, Byrne FJ, Chamberlin J, Dennehy TJ, Dickey AM, Gilrein D, Hall P, Luswig S, Oetting R, et al.: Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J Econ Entomol 2012, 105(3):753-766.
  • [35]Dalton R: Whitefly infestations: the Christmas invasion. Nature 2006, 443:898-900.
  • [36]Shatters RG Jr, Powell CA, Boykin LM, Liansheng H, McKenzie CL: Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. J Econ Entomol 2009, 102(2):750-758.
  • [37]Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall R, De Barro P, Frohlich DR: Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 2007, 44:1306-1319.
  • [38]De Barro PJ, Scott KD, Graham GC, Lange CL, Schutze MK: Isolation and characterization of microsatellite loci in Bemisia tabaci. Mol Ecol Notes 2003, 3:40-43.
  • [39]Selkoe KA, Toonen RJ: Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006, 9(5):615-629.
  • [40]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. 2001. In. 2.74 http://mesquiteproject.org webcite edn
  • [41]Tsagkarakou A, Tsigenopoulos CS, Gorman K, Lagnel J, Bedford ID: Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bull Entomol Res 2007, 97:29-40.
  • [42]De Barro P, Ahmed MZ: Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS ONE 2011, 6(10):e25579.
  • [43]Dickey AM, Osborne LS, Shatters RG Jr, Hall PM, McKenzie CL: Population genetics of invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species in the United States based on microsatellite markers. J Econ Entomol 2013, 106(3):1355-1364.
  • [44]Alemandri V, De Barro P, Bajerman N, Arguello Caro EB, Dumon AD, Mattio MF, Rodriguez SM, Truol G: Species within the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in soybean and bean crops in Argentina. J Econ Entomol 2012, 105(1):48-53.
  • [45]Boykin LM, Armstrong KF, Kubatko L, De Barro P: Species delimitation and global biosecurity. Evol Bioinform 2012, 8:1-37. 2012
  • [46]Hannan AJ: Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for missing heritability. Trends Genet 2010, 26(2):59-65.
  • [47]Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, et al.: Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 2006, 172(4):2541-2555.
  • [48]Valdes AM, Slatkin M, Freimer NB: Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 1993, 133(3):737-749.
  • [49]Dieringer D, Schlotterer C: Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 2003, 13(10):2242-2251.
  • [50]Zhu Y, Strassmann JE, Queller DC: Insertions, substitutions, and the origin of microsatellites. Genet Res 2000, 76(3):227-236.
  • [51]Angers B, Bernatchez L: Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol Biol Evol 1997, 14(3):230-238.
  • [52]Estoup A, Tailliez C, Cornuet JM, Solignac M: Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 1995, 12(6):1074-1084.
  • [53]Chistiakov DA, Hellemans B, Volckaert FAM: Microsatellites and their genomic distribution, evolution, function, and applications: a review with special reference to fish genetics. Aquaculture 2006, 255:1-29.
  • [54]Dettman JR, Taylor JW: Mutation and evolution of microsatellite loci in neurospora. Genetics 2004, 168:1231-1248.
  • [55]Kofler R, Schlotterer C, Luschutzky E, Lelley T: Survey of microsatellite clustering in eight fully sequenced species sheds light on the origin of compound microsatellites. BMC Genomics 2008, 9:612. BioMed Central Full Text
  • [56]Bacolla A, Larson JE, Collins JR, Li J, Milosavljevic A, Stenson PD, Cooper DN, Wells RD: Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Res 2008, 18(10):1545-1553.
  • [57]van Oppen MJH, Rico C, Turner GF, Hewitt GM: Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in Lake Malawi cichlids. Mol Biol Evol 2000, 17(4):489-498.
  • [58]Curtu AL, Finkeldey R, Gailing O: Comparative sequencing of a microsatellite locus reveals size homoplasy within and between European oak species (Quercus spp.). Plant Mol Biol Rep 2004, 22(4):339-346.
  • [59]Estoup A, Jarne P, Cornuet JM: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 2002, 11(9):1591-1604.
  • [60]Balloux F, Brunner H, Lugon-Moulin N, Hausser J, Goudet J: Microsatellites can be misleading: an empirical and simulation study. Evolution 2000, 54(4):1414-1422.
  • [61]Skrede I, Borgen L, Brochmann C: Genetic structuring in three closely related circumpolar plant species: ALFP versus microsatellite markers and high-arctic versus arctic-alpine distributions. Heredity 2009, 102:293-302.
  文献评价指标  
  下载次数:11次 浏览次数:3次