期刊论文详细信息
BMC Evolutionary Biology
Phylogenetic informativeness reconciles ray-finned fish molecular divergence times
Thomas J Near4  Matt Friedman3  Jeffrey P Townsend2  Alex Dornburg1 
[1] Department of Ecology and Evolutionary Biology, Yale University, New Haven 06520, Connecticut, USA;Program in Computational Biology and Bioinformatics, Yale University, New Haven 06510, Connecticut, USA;Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK;Yale Peabody Museum of Natural History, New Haven 06520, Connecticut, USA
关键词: Homoplasy;    Nucleotide Saturation;    Actinopterygii;    Molecular clock;   
Others  :  1118028
DOI  :  10.1186/s12862-014-0169-0
 received in 2014-04-03, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

Discordance among individual molecular age estimates, or between molecular age estimates and the fossil record, is observed in many clades across the Tree of Life. This discordance is attributed to a variety of variables including calibration age uncertainty, calibration placement, nucleotide substitution rate heterogeneity, or the specified molecular clock model. However, the impact of changes in phylogenetic informativeness of individual genes over time on phylogenetic inferences is rarely analyzed. Using nuclear and mitochondrial sequence data for ray-finned fishes (Actinopterygii) as an example, we extend the utility of phylogenetic informativeness profiles to predict the time intervals when nucleotide substitution saturation results in discordance among molecular ages estimated.

Results

We demonstrate that even with identical calibration regimes and molecular clock methods, mitochondrial based molecular age estimates are systematically older than those estimated from nuclear sequences. This discordance is most severe for highly nested nodes corresponding to more recent (i.e., Jurassic-Recent) divergences. By removing data deemed saturated, we reconcile the competing age estimates and highlight that the older mtDNA based ages were driven by nucleotide saturation.

Conclusions

Homoplasious site patterns in a DNA sequence alignment can systematically bias molecular divergence time estimates. Our study demonstrates that PI profiles can provide a non-arbitrary criterion for data exclusion to mitigate the influence of homoplasy on time calibrated branch length estimates. Analyses of actinopterygian molecular clocks demonstrate that scrutiny of the time scale on which sequence data is informative is a fundamental, but generally overlooked, step in molecular divergence time estimation.

【 授权许可】

   
2014 Dornburg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206020127925.pdf 1492KB PDF download
Figure 5. 61KB Image download
Figure 4. 37KB Image download
Figure 3. 38KB Image download
Figure 2. 133KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Martin W, Gierl A, Saedler H: Molecular evidence for pre-Cretaceous angiosperm origins. Nature 1989, 339:46-48.
  • [2]Bell CD, Soltis DE, Soltis PS: The age of the angiosperms: a molecular timescale without a clock. Evolution 2005, 59(6):1245-1258.
  • [3]Magallon S: Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst Biol 2010, 59(4):384-399.
  • [4]Smith SA, Beaulieu JM, Donoghue MJ: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci U S A 2010, 107(13):5897-5902.
  • [5]Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 2011, 334(6055):521-524.
  • [6]Norman JE, Ashley MV: Phylogenetics of perissodactyla and tests of the molecular clock. J Mol Evol 2000, 50(1):11-21.
  • [7]O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J: The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 2013, 339(6120):662-667.
  • [8]Springer MS, Murphy WJ, Eizirik E, O'Brien SJ: Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A 2003, 100(3):1056-1061.
  • [9]Steiper ME, Young NM: Primate molecular divergence dates. Mol Phylogenet Evol 2006, 41(2):384-394.
  • [10]Theodor JM: Molecular clock divergence estimates and the fossil record of Cetartiodactyla. J Paleontol 2004, 78(1):39-44.
  • [11]Dornburg A, Santini F, Alfaro ME: The influence of model averaging on clade posteriors: an example using the triggerfishes (Family Balistidae). Syst Biol 2008, 57(6):905-919.
  • [12]Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang ZH, Thomas MG, Coates MI: A new time-scale for ray-finned fish evolution. Proc R Soc B 2007, 274(1609):489-498.
  • [13]Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL: Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 2012, 109:13698-13703.
  • [14]Yamanoue Y, Miya M, Inoue JG, Matsuura K, Nishida M: The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet Syst 2006, 81(1):29-39.
  • [15]Alfaro ME, Santini F, Brock CD: Do reefs drive diversification in marine teleosts? Evidence from the pufferfish and their allies (Order Tetraodontiformes). Evolution 2007, 61(9):2104-2126.
  • [16]Pulquerio MJF, Nichols RA: Dates from the molecular clock: how wrong can we be? Trends Ecol Evol 2007, 22(4):180-184.
  • [17]Cooper A, Fortey R: Evolutionary explosions and the phylogenetic fuse. Trends Ecol Evol 1998, 13(4):151-156.
  • [18]Dornburg A, Beaulieu JM, Oliver JC, Near TJ: Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Syst Biol 2011, 60(4):519-527.
  • [19]Inoue J, Donoghue PCJ, Yang ZH: The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 2010, 59(1):74-89.
  • [20]Marshall CR: A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am Nat 2008, 171(6):726-742.
  • [21]Ho SYW, Phillips MJ: Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 2009, 58(3):367-380.
  • [22]Marshall CR: The fossil record and estimating divergence times between lineages: maximum divergence times and the importance of reliable phylogenies. J Mol Evol 1990, 30:400-408.
  • [23]Benton MJ, Donoghue PCJ: Paleontological evidence to date the tree of life. Mol Biol Evol 2007, 24(1):26-53.
  • [24]Benton MJ, Donoghue PCJ, Asher RJ: Calibrating and constraining molecular clocks. In The Timetree of Life. Edited by Hedges SB, Kumar S. Oxford University Press, Oxford; 2009:35-86.
  • [25]Dornburg A, Brandley MC, McGowen MR, Near TJ: Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea). Mol Biol Evol 2012, 29(2):721-736.
  • [26]Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG: Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci U S A 2002, 99(7):4430-4435.
  • [27]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4(5):699-710.
  • [28]Ho SYW, Larson G: Molecular clocks: when times are a-changin'. Trends Genet 2006, 22(2):79-83.
  • [29]Igawa T, Kurabayashi A, Usuki C, Fujii T, Sumida M: Complete mitochondrial genomes of three neobatrachian anurans: a case study of divergence time estimation using different data and calibration settings. Gene 2008, 407(1):116-129.
  • [30]Brandley MC, Wang Y, Guo X, Nieto Montes De Oca A, Feria-Ortiz M, Hikida T, Ota H: Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards. Syst Biol 2011, 60:3-15.
  • [31]Xia XH, Xie Z, Salemi M, Chen L, Wang Y: An index of substitution saturation and its application. Mol Phylogenet Evol 2003, 26(1):1-7.
  • [32]Yang Z: Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 1996, 11:367-372.
  • [33]Graybeal A: Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Syst Biol 1994, 43(2):174-193.
  • [34]Moritz C, Schneider CJ, Wake DB: Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 1992, 41:273-291.
  • [35]Xia X, Lemey P: Assessing Substitution Saturation With DAMBE. In The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Edited by Philippe L, Marco S, Anne-Mieke V. Cambridge University Press; 2009:611–626.
  • [36]Townsend JP: Profiling phylogenetic informativeness. Syst Biol 2007, 56(2):222-231.
  • [37]Townsend JP, Leuenberger C: Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst Biol 2011, 60:358-365.
  • [38]Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M: Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 2008, 8(1):215.
  • [39]Zhang P, Wake DB: Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2009, 53(2):492-508.
  • [40]Miya M, Pietsch TW, Orr JW, Arnold RJ, Satoh TP, Shedlock AM, Ho HC, Shimazaki M, Yabe M, Nishida M: Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol Biol 2010, 10(1):58.
  • [41]Yamanoue Y, Miya M, Doi H, Mabuchi K, Sakai H, Nishida M: Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae): a mitogenomic perspective. Plos One 2011, 6(2):e17410.
  • [42]Zheng Y, Peng R, Kuro-O M, Zeng X: Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (Order Caudata). Mol Biol Evol 2011, 28(9):2521-2535.
  • [43]Gardiner BG: The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from Upper Devonian of Western Australia. Bull Brit Mus (Nat Hist) Geol 1984, 37(4):173-428.
  • [44]Friedman M, Sallan LC: Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 2012, 55:707-742.
  • [45]Nelson JS: Fishes of the World, 4th Edition. John Wiley, Hoboken; 2006.
  • [46]Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A 2009, 106(32):13410-13414.
  • [47]Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton JC II: The tree of life and a new classification of bony fishes.PLoS Currents 2013, 5:.
  • [48]Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M: Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci 2013, 110(31):12738-12743.
  • [49]Santini F, Harmon LJ, Carnevale G, Alfaro ME: Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 2009, 9:164.
  • [50]Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG: Evolutionary origin of the scombridae (tunas and mackerels): members of a paleogene adaptive radiation with 14 other pelagic fish families. PLoS One 2013, 8(9):e73535.
  • [51]Blieck A: From adaptive radiations to biotic crises in Palaeozoic vertebrates: a geobiological approach. Geologica Belgica 2011, 14(3–4):203-227.
  • [52]Friedman M: Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc R Soc B 2010, 277(1688):1675-1683.
  • [53]Lloyd GT, Friedman M: A survey of palaeontological sampling biases in fishes based on the phanerozoic record of Great Britain. Palaeogeogr Palaeoclimat Palaecol 2012, 372:5-17.
  • [54]Cavin L, Forey PL: Using ghost lineages to identify diversification events in the fossil record. Biol Lett 2007, 3(2):201-204.
  • [55]Cavin L, Forey PL, Lecuyer C: Correlation between environment and late mesozoic ray-finned fish evolution. Palaeogeogr Palaeoclimat Palaecol 2007, 245(3–4):353-367.
  • [56]Broughton RE, Broughton RE: Phylogeny of Teleosts Based on Mitochondrial Sequences. In Origin and Phylogenetic Interrelationships of Teleosts. Edited by Nelson JS, Schultze H-P, Schultze H-P, Wilson MVH. Verlag Dr. Friedrich Pfeil, Munchen; 2010:61-76.
  • [57]Inoue JG, Miya M, Venkatesh B, Nishida M: The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 2005, 349:227-235.
  • [58]Near TJ, Dornburg A, Tokita M, Suzuki D, Brandley MC, Friedman M: Boom and bust: ancient and recent diversification in bichirs (polypteridae: actinopterygii), a relictual lineage of ray‐finned fishes. Evolution 2013, 68(4):1014-1026.
  • [59]Phillips MJ: Branch-length estimation bias misleads molecular dating for a vertebrate mitochondrial phylogeny. Gene 2009, 441(1):132-140.
  • [60]Sallan LC, Friedman M: Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc R Soc B 2012, 279(1735):2025-2032.
  • [61]Dornburg A, Sidlauskas B, Santini F, Sorenson L, Near TJ, Alfaro ME: The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: balistidae). Evolution 2011, 65(7):1912-1926.
  • [62]Santini F, Sorenson L, Alfaro ME: A new multi-locus timescale reveals the evolutionary basis of diversity patterns in triggerfishes and filefishes (Balistidae, Monacanthidae; Tetraodontiformes). Mol Phylogenet Evol 2013, 69(1):165-176.
  • [63]Santini F, Sorenson L, Marcroft T, Dornburg A, Alfaro ME: A multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae; Tetraodontiformes). Mol Phylogenet Evol 2013, 66(1):153-160.
  • [64]Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ: Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings of the Royal Society B: Biological Sciences 2013, 280(1770):20131733.
  • [65]López Fernández H, Arbour JH, Winemiller K, Honeycutt RL: Testing for ancient adaptive radiations in Neotropical cichlid fishes. Evolution 2013, 67(5):1321-1337.
  • [66]Matschiner M, Hanel R, Salzburger W: On the origin and trigger of the notothenioid adaptive radiation. Plos One 2011, 6(4):e18911.
  • [67]Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernandez DA, Jones CD: Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci U S A 2012, 109(9):3434-3439.
  • [68]Graybeal A: The phylogenetic utility of cytochrome b: lessons from bufonid frogs. Mol Phylogenet Evol 1993, 2:256-269.
  • [69]Blouin MS, Yowell CA, Courtney CH, Dame JB: Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Mol Biol Evol 1998, 15(12):1719-1727.
  • [70]Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, Hendy MD, Penny D: Toward resolving deep Neoaves phylogeny: data, signal enhancement, and priors. Mol Biol Evol 2009, 26(2):313-326.
  • [71]Phillips MJ, Penny D: The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 2003, 28(2):171-185.
  • [72]Honeycutt RL, Adkins RM: Higher level systematics of eutherian mammals: an assessment of molecular characters and phylogenetic hypotheses. Annu Rev Ecol Syst 1993, 24:279-305.
  • [73]Jeffroy O, Brinkmann H, Delsuc F, Philippe H: Phylogenomics: the beginning of incongruence? Trends Genet 2006, 22(4):225-231.
  • [74]Morgan-Richards M, Trewick SA, Bartosch-Härlid A, Kardailsky O, Phillips MJ, McLenachan PA, Penny D: Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evol Biol 2008, 8(1):20.
  • [75]Townsend JP, Lopez-Giraldez F: Optimal selection of gene and ingroup taxon sampling for resolving phylogenetic relationships. Syst Biol 2010, 59(4):446-457.
  • [76]Townsend JP, Lopez-Giraldez F, Friedman R: The phylogenetic informativeness of nucleotide and amino acid sequences for reconstructing the vertebrate tree. J Mol Evol 2008, 67(5):437-447.
  • [77]Townsend JP, Su Z, Tekle YI: Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Syst Biol 2012, 61(5):835-849.
  • [78]Doyle JA, Donoghue MJ: Phylogenies and angiosperm diversification. Paleobio 1993, 19(2):141-167.
  • [79]Near TJ, Meylan PA, Shaffer HB: Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am Nat 2005, 165(2):137-146.
  • [80]Pyron RA: A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 2010, 59(2):185-194.
  • [81]Rutschmann F, Eriksson T, Abu Salim K, Conti E: Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Syst Biol 2007, 56(4):591-608.
  • [82]Drummond AJ, Suchard MA: Bayesian random local clocks, or one rate to rule them all. BMC Biol 2010, 8:114.
  • [83]Aris-Brosou S, Yang ZH: Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA Phylogeny. Syst Biol 2002, 51(5):703-714.
  • [84]Lepage T, Bryant D, Philippe H, Lartillot N: A general comparison of relaxed molecular clock models. Mol Biol Evol 2007, 24(12):2669-2680.
  • [85]Yoder AD, Yang Z: Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 2000, 17(7):1081-1090.
  • [86]Brown WM, George M, Wilson AC: Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci 1979, 76(4):1967-1971.
  • [87]Jiang ZJ, Castoe TA, Austin CC, Burbrink FT, Herron MD, McGuire JA, Parkinson CL, Pollock DD: Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evol Biol 2007, 7(1):123.
  • [88]Wolfe KH, Li W-H, Sharp PM: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci 1987, 84(24):9054-9058.
  • [89]Smith DR, Arrigo KR, Alderkamp A-C, Allen AE: Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of < i > Phaeocystis algae. Mol Phylogenet Evol 2014, 71:36-40.
  • [90]Shearer T, Van Oppen M, Romano S, Wörheide G: Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 2002, 11(12):2475-2487.
  • [91]Hellberg ME: No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 2006, 6(1):24.
  • [92]Chen I-P, Tang C-Y, Chiou C-Y, Hsu J-H, Wei NV, Wallace CC, Muir P, Wu H, Chen CA: Comparative analyses of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants. Marine Biotechnol 2009, 11(1):141-152.
  • [93]Dávalos LM, Perkins SL: Saturation and base composition bias explain phylogenomic conflict in < i > Plasmodium. Genomics 2008, 91(5):433-442.
  • [94]Pick K, Philippe H, Schreiber F, Erpenbeck D, Jackson D, Wrede P, Wiens M, Alié A, Morgenstern B, Manuel M: Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol 2010, 27(9):1983-1987.
  • [95]Chiari Y, Cahais V, Galtier N, Delsuc F: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 2012, 10(1):65.
  • [96]Parks M, Cronn R, Liston A: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol 2012, 12(1):100.
  • [97]Lemmon AR, Emme SA, Lemmon EM: Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 2012, 61(5):727-744.
  • [98]Faircloth BC, Chang J, Alfaro ME: TAPIR enables high-throughput estimation and comparison of phylogenetic informativeness using locus-specific substitution models.arXiv preprint arXiv:12021215 2012, 1215.
  • [99]Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide G, Baurain D: Resolving difficult phylogenetic auestions: why more sequences are not enough. PLoS Biol 2011, 9(3):e1000602.
  • [100]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452(7188):745-749.
  • [101]Delsuc F, Brinkmann H, Philippe H: Phylogenomics and the reconstruction of the tree of life. Nature Rev Genet 2005, 6(5):361-375.
  • [102]Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJ: Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals.Mol Biol Evol 2013. mst116.
  • [103]Lin J, Chen G, Gu L, Shen Y, Zheng M, Zheng W, Hu X, Zhang X, Qiu Y, Liu X: Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate. Mol Phylogenet Evol 2014, 71:193-200.
  • [104]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [105]Smith SA, Dunn CW: Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 2008, 24(5):715-716.
  • [106]Lanfear R, Calcott B, Ho SYW, Guindon S: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 2012, 29(6):1695-1701.
  • [107]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
  • [108][http://tree.bio.ed.ac.uk/software/tracer] webcite Rambaut A, Drummond AJ: Tracer, MCMC Trace Analysis Package. 15th edition. 2003. Available from .
  • [109]Coates MI: Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zool J Linn Soc 1998, 122(1–2):27-59.
  • [110]Li CH, Lu GQ, Ortí G: Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst Biol 2008, 57(4):519-539.
  • [111]Gardiner BG, Schaeffer B: Interrelationships of lower actinopterygian fishes. Zool J Linn Soc 1989, 97:135-187.
  • [112]Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M: Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 2003, 26:121-138.
  • [113]Johnson GD, Patterson C: Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bull Mar Sci 1993, 52(1):554-626.
  • [114]Warnock RCM, Yang ZH, Donoghue PCJ: Exploring uncertainty in the calibration of the molecular clock. Biol Lett 2012, 8(1):156-159.
  • [115]Morrow JR, Sandberg CA: Evolution of Devonian carbonate-shelf margin. Nevada Geosphere 2008, 4(2):445-458.
  • [116]Zhu M, Zhao WJ, Jia LT, Lu J, Qiao T, Qu QM: The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 2009, 458(7237):469-474.
  • [117]Dineley DL, Metcalf SJ: Fossil Fishes of Great Britain. Peterborough, Joint Nature Conservation Committee; 1999.
  • [118]Menning M, Weyer D, Drozdzewski G, Van Amerom HWJ, Wendt I: A Carboniferous timescale 2000: discussion and use of geological parameters as time indicators from central and western Europe. Geol Jahrbuch 2000, 2000(A156):3-44.
  • [119]Coates MI: Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Phil Trans R Soc B 1999, 354(1382):435-462.
  • [120]Xu G-H, Gao K-Q, Finarelli J, Xu G-H, Gao K-Q, Finarelli J: A revision of the Middle Triassic scanilepiform fish Fukangichthys longidorsalis from Xinjiang, China, with comments on the phylogeny of the Actinopteri.J Vert Paleo. in press.
  • [121]Gradstein FM, Ogg G, Schmitz M: The Geologic Time Scale 2012 2-Volume Set. Elsevier, Amsterdam; 2012.
  • [122]Olsen PE: The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the early Triassic Sakamena group of Madagascar, with comments on the relationships of the holostean fishes. J Vert Paleo 1984, 4:481-499.
  • [123]Catuneanu O, Wopfer H, Eriksson PG, Carincross B, Rubidge BS, Smith RMH, Hancox PJ: The Karoo basins of South-Central Africa. J Afr Earth Sci 2005, 43:211-253.
  • [124]Ogg JG, Ogg JG: The Triassic Period. In A Geologic Time Scale. Edited by Gradstein F, Ogg J, Smith A. Cambridge University Press, Cambridge; 2004:271-306.
  • [125]Xu GH, Gao KQ: A new scanilepiform from the lower triassic of northern Gansu Province, China, and phylogenetic relationships of non-teleostean actinopterygii. Zool J Linn Soc 2011, 161(3):595-612.
  • [126]Patterson C: A review of Mesozoic acanthopterygian fishes, with special reference to those of the English Chalk. Phil Trans R Soc B 1964, 247(739):213-482.
  • [127]Rosen DE: Interrelationships of Higher Euteleostean Fishes. In Interrelationships of Fishes. Edited by Greenwood PH, Miles RS, Patterson C, Greenwood PH, Miles RS, Patterson C. Academic Press, London; 1973:397-513.
  • [128]Santini F, Tyler JC: A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), upper Cretaceous to recent. Zool J Linn Soc 2003, 139(4):565-617.
  • [129]Gallo V, Carvalho MSSD, Souto AA: A possible occurrence of Diodontidae (Teleostei, Tetraodontiformes) in the Upper Cretaceous of the Paraíba Basin, Northeastern Brazil. Cretaceous Research 2009, 30(3):599-604.
  • [130]Yang ZH, Rannala B: Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 2006, 23(1):212-226.
  • [131]Sorbini L: Segnalazione di un plettognato Cretacico Plectocretacicus nov. General Boll Mus Civ Stor Nat Verona 1979, 6:1-4.
  • [132]Tyler JC, Sorbini L: New Superfamily and Three new Families of Tetraodontiform Fishes from the Upper Cretaceous: The Earliest and Most Morphologically Primitive Plectognaths. 1996.
  • [133]González-Rodríguez KA, Schultze H-P, Arratia G: Minature Armored Acanthomorph Teleosts from the Albian/Cenomanian (Cretaceous) of Mexico. In Mesozoic Fishes 5—Global Diversity and Evolution. Edited by Arratia G, Arratia G, Schultze H-P, Schultze H-P, Wilson MVH. Verlag Dr Friedrich Pfeil, Munich; 2013:457-487.
  • [134]McMahan CD, Chakrabarty P, Sparks JS, Smith WL, Davis MP: Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). PLoS One 2013, 8(8):e71162.
  • [135]Waters JM, Trewick SA, Paterson AM, Spencer HG, Kennedy M, Craw D, Burridge CP, Wallis GP: Biogeography off the tracks. Syst Biol 2013, 62(3):494-498.
  • [136]Lopez-Giraldez F, Townsend JP: PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol 2011, 11:152.
  文献评价指标  
  下载次数:0次 浏览次数:12次