期刊论文详细信息
BMC Microbiology
Clonal diversity of the glutamate dehydrogenase gene in Giardia duodenalis from Thai Isolates: evidence of genetic exchange or Mixed Infections?
Peerapan Tan-ariya2  Wilai Saksirisampant3  Parima Boontanom4  RC Andrew Thompson1  Mathirut Mungthin4  Saovanee Leelayoova4  Suradej Siripattanapipong2 
[1] WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia;Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand;Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Bangkok, 10330, Thailand;Department of Parasitology, Phramongkutklao College of Medicine, Rajawithi Rd., Bangkok, 10400, Thailand
关键词: genetic exchange;    genetic diversity;    glutamate dehydrogenase;    Giardia duodenalis;   
Others  :  1222214
DOI  :  10.1186/1471-2180-11-206
 received in 2011-03-23, accepted in 2011-09-20,  发布年份 2011
PDF
【 摘 要 】

Background

The glutamate dehydrogenase gene (gdh) is one of the most popular and useful genetic markers for the genotypic analysis of Giardia duodenalis (syn. G. lamblia, G. intestinalis), the protozoan that widely causes enteric disease in humans. To determine the distribution of genotypes of G. duodenalis in Thai populations and to investigate the extent of sequence variation at this locus, 42 fecal samples were collected from 3 regions of Thailand i.e., Central, Northern, and Eastern regions. All specimens were analyzed using PCR-based genotyping and recombinant subcloning methods.

Results

The results showed that the prevalence of assemblages A and B among these populations was approximately equal, 20 (47.6%) and 22 (52.4%), respectively. Sequence analysis revealed that the nucleotide diversity of assemblage B was significantly greater than that in assemblage A. Among all assemblage B positive specimens, the allelic sequence divergence within isolates was detected. Nine isolates showed mixed alleles, ranged from three to nine distinct alleles per isolate. Statistical analysis demonstrated the occurrence of genetic recombination within subassemblages BIII and BIV was likely.

Conclusion

This study supports increasing evidence that G. duodenalis has the potential for genetic exchange.

【 授权许可】

   
2011 Siripattanapipong et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150805121033264.pdf 775KB PDF download
Figure 2. 25KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lane S, Lloyd D: Current trends in research into the waterborne parasite Giardia. Crit Rev Microbiol 2002, 28(2):123-147.
  • [2]Thompson RC, Hopkins RM, Homan WL: Nomenclature and genetic groupings of Giardia infecting mammals. Parasitol Today 2000, 16(5):210-213.
  • [3]The world health report: World Health Organisation. World Health Organisation, Geneva 1996.
  • [4]Andrews RH, Adams M, Boreham PF, Mayrhofer G, Meloni BP: Giardia intestinalis: electrophoretic evidence for a species complex. Int J Parasitol 1989, 19(2):183-190.
  • [5]Homan WL, Gilsing M, Bentala H, Limper L, van Knapen F: Characterization of Giardia duodenalis by polymerase-chain-reaction fingerprinting. Parasitol Res 1998, 84(9):707-714.
  • [6]Homan WL, van Enckevort FH, Limper L, van Eys GJ, Schoone GJ, Kasprzak W, Majewska AC, van Knapen F: Comparison of Giardia isolates from different laboratories by isoenzyme analysis and recombinant DNA probes. Parasitol Res 1992, 78(4):316-323.
  • [7]Hopkins RM, Meloni BP, Groth DM, Wetherall JD, Reynoldson JA, Thompson RC: Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. J Parasitol 1997, 83(1):44-51.
  • [8]Meloni BP, Lymbery AJ, Thompson RC: Isoenzyme electrophoresis of 30 isolates of Giardia from humans and felines. Am J Trop Med Hyg 1988, 38(1):65-73.
  • [9]Monis PT, Andrews RH, Mayrhofer G, Ey PL: Molecular systematics of the parasitic protozoan Giardia intestinalis. Mol Biol Evol 1999, 16(9):1135-1144.
  • [10]Lasek-Nesselquist E, Welch DM, Sogin ML: The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. Int J Parasitol 2010, 40(9):1063-1064.
  • [11]Kabnick KS, Peattie DA: In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J Cell Sci 1990, 95(Pt 3):353-360.
  • [12]Yu LZ, Birky CW, Adam RD: The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot Cell 2002, 1(2):191-199.
  • [13]Ghosh S, Frisardi M, Rogers R, Samuelson J: How Giardia swim and divide. Infect Immun 2001, 69(12):7866-7872.
  • [14]Bernander R, Palm JE, Svard SG: Genome ploidy in different stages of the Giardia lamblia life cycle. Cell Microbiol 2001, 3(1):55-62.
  • [15]Sagolla MS, Dawson SC, Mancuso JJ, Cande WZ: Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 2006, 119(Pt 23):4889-4900.
  • [16]Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, et al.: Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 2007, 317(5846):1921-1926.
  • [17]Franzen O, Jerlstrom-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, Palm D, Andersson JO, Andersson B, Svard SG: Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 2009, 5(8):e1000560.
  • [18]Teodorovic S, Braverman JM, Elmendorf HG: Unusually low levels of genetic variation among Giardia lamblia isolates. Eukaryot Cell 2007, 6(8):1421-1430.
  • [19]Cooper MA, Adam RD, Worobey M, Sterling CR: Population genetics provides evidence for recombination in Giardia. Curr Biol 2007, 17(22):1984-1988.
  • [20]O'Grady MR, Slocombe JO: An investigation of variables in a fecal flotation technique. Can J Comp Med 1980, 44(2):148-157.
  • [21]Boontanom P, Siripattanapipong S, Mungthin M, Tan-ariya P, Leelayoova S: Improved sensitivity of PCR amplification of glutamate dehydrogenase gene for detection and genotyping of Giardia duodenalis in stool specimen. Southeast Asian J Trop Med Public Health 2010, 41(2):280-284.
  • [22]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal × version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [23]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [24]Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9(4):299-306.
  • [25]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [26]Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31(13):3812-3814.
  • [27]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123(3):585-595.
  • [28]John MS: Evolutionary genetics. Oxford: Oxford University Press; 1989.
  • [29]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23(2):254-267.
  • [30]Bryant D, Moulton V: Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004, 21(2):255-265.
  • [31]Bruen TC, Philippe H, Bryant D: A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172(4):2665-2681.
  • [32]Hudson RR: Properties of a neutral allele model with intragenic recombination. Theor Popul Biol 1983, 23(2):183-201.
  • [33]Caccio SM, Ryan U: Molecular epidemiology of giardiasis. Mol Biochem Parasitol 2008, 160(2):75-80.
  • [34]Sprong H, Caccio SM, van der Giessen JW: Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl Trop Dis 2009, 3(12):e558.
  • [35]Kosuwin R, Putaporntip C, Pattanawong U, Jongwutiwes S: Clonal diversity in Giardia duodenalis isolates from Thailand: evidences for intragenic recombination and purifying selection at the beta giardin locus. Gene 2010, 449:(1-2):1-8.
  • [36]Cock JM, Schmidt RR: A glutamate dehydrogenase gene sequence. Nucleic Acids Res 1989, 17(24):10500.
  • [37]Geurden T, Levecke B, Caccio SM, Visser A, De Groote G, Casaert S, Vercruysse J, Claerebout E: Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. Parasitology 2009, 136(10):1161-1168.
  • [38]Ramesh MA, Malik SB, Logsdon JM Jr: A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 2005, 15(2):185-191.
  • [39]Lasek-Nesselquist E, Welch DM, Thompson RC, Steuart RF, Sogin ML: Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 2009, 56(6):504-518.
  • [40]Posada D: Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 2002, 19(5):708-717.
  • [41]Lemey P, Posada D: Introduction to recombination detection. In The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd edition. Edited by Lemey P, Salemi M, and Vandamme AM. New York: Cambridge University Press; 2009:493-518.
  • [42]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  文献评价指标  
  下载次数:32次 浏览次数:22次