BMC Genomics | |
Genome wide screening of RNAi factors of Sf21 cells reveal several novel pathway associated proteins | |
Raj K Bhatnagar4  Sunil K Mukherjee2  Pawan Malhotra1  Ajit Kumar3  Pavan Kumar Kakumani4  Subhanita Ghosh4  | |
[1] Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India;Centre for Bioinformatics, M.D. University, Rohtak 124001, India;Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India | |
关键词: Spodoptera frugiperda; Insect RNAi; Genome-wide screening; Sf21 cells; siRNA screening; RNA interference; | |
Others : 1140657 DOI : 10.1186/1471-2164-15-775 |
|
received in 2014-05-28, accepted in 2014-08-29, 发布年份 2014 | |
【 摘 要 】
Background
RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application.
Results
The genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects.
Conclusion
The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications.
【 授权许可】
2014 Ghosh et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150325074748622.pdf | 1698KB | download | |
Figure 9. | 122KB | Image | download |
Figure 8. | 53KB | Image | download |
Figure 7. | 72KB | Image | download |
Figure 6. | 56KB | Image | download |
Figure 5. | 149KB | Image | download |
Figure 4. | 64KB | Image | download |
Figure 3. | 67KB | Image | download |
Figure 2. | 96KB | Image | download |
Figure 1. | 99KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
- [2]Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404:293-296.
- [3]Chuang CF, Meyerowitz EM: Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2000, 97:4985-4990.
- [4]Li YX, Farrell MJ, Liu R, Mohanty N, Kirby ML: Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol 2000, 217:394-405.
- [5]Meister G, Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431:343-349.
- [6]Zamore PD, Tuschl T, Sharp PA, Bartel DP: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101:25-33.
- [7]Matzke MA, Birchler JA: RNAi-mediated pathways in the nucleus. Nat Rev Genet 2005, 6:24-35.
- [8]Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D: RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004, 303:672-676.
- [9]Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K: RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 2005, 436:1044-1047.
- [10]Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409:363-366.
- [11]Elbashir SM, Lendeckel W, Tuschl T: RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001, 15:188-200.
- [12]Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
- [13]Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X: R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 2003, 301:1921-1925.
- [14]Filipowicz W: RNAi: the nuts and bolts of the RISC machine. Cell 2005, 122:17-20.
- [15]Song JJ, Smith SK, Hannon GJ, Joshua-Tor L: Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004, 305:1434-1437.
- [16]Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH: A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003, 425:411-414.
- [17]Sundaram P, Echalier B, Han W, Hull D, Timmons L: ATP-binding cassette transporters are required for efficient RNA interference in Caenorhabditis elegans. Mol Biol Cell 2006, 17:3678-3688.
- [18]Winston WM, Molodowitch C, Hunter CP: Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 2002, 295:2456-2459.
- [19]Zeng Y, Sankala H, Zhang X, Graves PR: Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J 2008, 413:429-436.
- [20]Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, Kennedy S, Dybbs M, Bertin N, Kaplan JM, Vidal M, Ruvkun G: Functional genomic analysis of RNA interference in C. elegans. Science 2005, 308:1164-1167.
- [21]Dorner S, Lum L, Kim M, Paro R, Beachy PA, Green R: A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Proc Natl Acad Sci U S A 2006, 103:11880-11885.
- [22]Bucher G, Scholten J, Klingler M: Parental RNAi in Tribolium (Coleoptera). Curr Biol 2002, 12:R85-86.
- [23]Dong Y, Friedrich M: Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 2005, 5:25.
- [24]Jarosch A, Moritz RF: Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. J Insect Physiol 2011, 57:851-857.
- [25]Li J, Wang X, Wang M, Ma W, Hua H: Advance of RNA interference technique in Hemipteran insects. Insect Sci 2012, 20:31-39.
- [26]Swevers L, Liu J, Huvenne H, Smagghe G: Search for limiting factors in the RNAi pathway in silkmoth tissues and the Bm5 cell line: the RNA-binding proteins R2D2 and Translin. PLoS ONE 2011, 6:e20250.
- [27]Xu HJ, Chen T, Ma XF, Xue J, Pan PL, Zhang XC, Cheng JA, Zhang CX: Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol Biol 2013, 22:635-647.
- [28]Zhou X, Wheeler MM, Oi FM, Scharf ME: RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 2008, 38:805-815.
- [29]Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G: Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 2008, 9:R10.
- [30]Singh G, Popli S, Hari Y, Malhotra P, Mukherjee S, Bhatnagar RK: Suppression of RNA silencing by Flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. FASEB J 2009, 23:1845-1857.
- [31]Chinnappan M, Singh AK, Kakumani PK, Kumar G, Rooge SB, Kumari A, Varshney A, Rastogi A, Sarin SK, Malhotra P, Mukherjee SK, Bhatnagar RK: Key elements of the RNAi pathway are regulated by hepatitis B virus replication and HBx acts as a viral suppressor of RNA silencing. Biochem J 2014, 462:347-358.
- [32]Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK: Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol 2013, 87:8870-8883.
- [33]Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK: A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 2014, 104:134-143.
- [34]Singh G, Sachdev B, Sharma N, Seth R, Bhatnagar RK: Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda. Appl Environ Microbiol 2010, 76:7202-7209.
- [35]Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN: Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 2011, 475:201-205.
- [36]Knight SW, Bass BL: A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001, 293:2269-2271.
- [37]MacRae IJ, Doudna JA: Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 2007, 17:138-145.
- [38]Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W: Single processing center models for human Dicer and bacterial RNase III. Cell 2004, 118:57-68.
- [39]Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW: Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004, 117:69-81.
- [40]Consortium ISG: The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 2008, 38:1036-1045.
- [41]Landthaler M, Yalcin A, Tuschl T: The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004, 14:2162-2167.
- [42]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415-419.
- [43]Yeom KH, Lee Y, Han J, Suh MR, Kim VN: Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006, 34:4622-4629.
- [44]Saito K, Ishizuka A, Siomi H, Siomi MC: Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 2005, 3:e235.
- [45]Liu X, Jiang F, Kalidas S, Smith D, Liu Q: Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 2006, 12:1514-1520.
- [46]Kurihara Y, Takashi Y, Watanabe Y: The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 2006, 12:206-212.
- [47]Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ: Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001, 293:1146-1150.
- [48]Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L: The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 2003, 10:1026-1032.
- [49]Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T: Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004, 15:185-197.
- [50]Sasaki T, Shiohama A, Minoshima S, Shimizu N: Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 2003, 82:323-330.
- [51]Okamura K, Ishizuka A, Siomi H, Siomi MC: Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 2004, 18:1655-1666.
- [52]Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD: A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006, 313:320-324.
- [53]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128:1089-1103.
- [54]Kawaoka S, Minami K, Katsuma S, Mita K, Shimada T: Developmentally synchronized expression of two Bombyx mori Piwi subfamily genes, SIWI and BmAGO3 in germ-line cells. Biochem Biophys Res Commun 2008, 367:755-760.
- [55]Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 2007, 315:1587-1590.
- [56]O’Donnell KA, Boeke JD: Mighty Piwis defend the germline against genome intruders. Cell 2007, 129:37-44.
- [57]Zamore PD: RNA silencing: genomic defence with a slice of pi. Nature 2007, 446:864-865.
- [58]Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC: Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 2006, 20:2214-2222.
- [59]Cordin O, Banroques J, Tanner NK, Linder P: The DEAD-box protein family of RNA helicases. Gene 2006, 367:17-37.
- [60]Cordin O, Tanner NK, Doere M, Linder P, Banroques J: The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 2004, 23:2478-2487.
- [61]Robb GB, Rana TM: RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 2007, 26:523-537.
- [62]Tabara H, Yigit E, Siomi H, Mello CC: The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 2002, 109:861-871.
- [63]Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O'Malley BW, Kato S: DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007, 9:604-611.
- [64]Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA: The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol 2004, 1:54-58.
- [65]Furth PA, Choe WT, Rex JH, Byrne JC, Baker CC: Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol Cell Biol 1994, 14:5278-5289.
- [66]Gunderson SI, Polycarpou-Schwarz M, Mattaj IW: U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell 1998, 1:255-264.
- [67]Mount SM, Salz HK: Pre-messenger RNA processing factors in the Drosophila genome. J Cell Biol 2000, 150:F37-44.
- [68]Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R: Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005, 123:265-276.
- [69]Parry DH, Xu J, Ruvkun G: A whole-genome RNAi Screen for C. elegans miRNA pathway genes. Curr Biol 2007, 17:2013-2022.
- [70]Donertas D, Sienski G, Brennecke J: Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev 2013, 27:1693-1705.
- [71]Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K: DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev 2013, 27:1656-1661.
- [72]Chen J, Waltenspiel B, Warren WD, Wagner EJ: Functional analysis of the integrator subunit 12 identifies a microdomain that mediates activation of the Drosophila integrator complex. J Biol Chem 2013, 288:4867-4877.
- [73]Domeier ME, Morse DP, Knight SW, Portereiko M, Bass BL, Mango SE: A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science 2000, 289:1928-1931.
- [74]Eulalio A, Behm-Ansmant I, Izaurralde E: P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007, 8:9-22.
- [75]Adams BD, Claffey KP, White BA: Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 2009, 150:14-23.
- [76]Paroo Z, Ye X, Chen S, Liu Q: Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 2009, 139:112-122.
- [77]Rudel S, Wang Y, Lenobel R, Korner R, Hsiao HH, Urlaub H, Patel D, Meister G: Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res 2011, 39:2330-2343.
- [78]Sundaram P, Han W, Cohen N, Echalier B, Albin J, Timmons L: Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7. Genetics 2008, 178:801-814.
- [79]Timmons LD: ABC transporters and RNAi in Caenorhabditis elegans. J Bioenerg Biomembr 2007, 39:459-463.
- [80]Broehan G, Kroeger T, Lorenzen M, Merzendorfer H: Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 2013, 14:6.
- [81]Liu S, Zhou S, Tian L, Guo E, Luan Y, Zhang J, Li S: Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics 2011, 12:491.
- [82]Handler D, Olivieri D, Novatchkova M, Gruber FS, Meixner K, Mechtler K, Stark A, Sachidanandam R, Brennecke J: A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J 2011, 30:3977-3993.
- [83]Thivierge C, Makil N, Flamand M, Vasale JJ, Mello CC, Wohlschlegel J, Conte D Jr, Duchaine TF: Tudor domain ERI-5 tethers an RNA-dependent RNA polymerase to DCR-1 to potentiate endo-RNAi. Nat Struct Mol Biol 2011, 19:90-97.
- [84]Zhu L, Tatsuke T, Li Z, Mon H, Xu J, Lee JM, Kusakabe T: Molecular cloning of BmTUDOR-SN and analysis of its role in the RNAi pathway in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 2012, 47:207-215.
- [85]Duxbury MS, Ashley SW, Whang EE: RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem Biophys Res Commun 2005, 331:459-463.
- [86]Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C: Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 2003, 9:299-308.
- [87]Kobayashi I, Tsukioka H, Komoto N, Uchino K, Sezutsu H, Tamura T, Kusakabe T, Tomita S: SID-1 protein of Caenorhabditis elegans mediates uptake of dsRNA into Bombyx cells. Insect Biochem Mol Biol 2012, 42:148-154.
- [88]Kloc A, Martienssen R: RNAi, heterochromatin and the cell cycle. Trends Genet 2008, 24:511-517.
- [89]Grewal SI, Moazed D: Heterochromatin and epigenetic control of gene expression. Science 2003, 301:798-802.
- [90]Lippman Z, Martienssen R: The role of RNA interference in heterochromatic silencing. Nature 2004, 431:364-370.
- [91]Ogawa Y, Sun BK, Lee JT: Intersection of the RNA interference and X-inactivation pathways. Science 2008, 320:1336-1341.
- [92]Martienssen RA, Zaratiegui M, Goto DB: RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet 2005, 21:450-456.
- [93]Doyon Y, Selleck W, Lane WS, Tan S, Cote J: Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 2004, 24:1884-1896.
- [94]Dudley NR, Labbe JC, Goldstein B: Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci U S A 2002, 99:4191-4196.
- [95]Anantharaman V, Koonin EV, Aravind L: Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002, 30:1427-1464.
- [96]Izaurralde E: A role for eIF4AII in microRNA-mediated mRNA silencing. Nat Struct Mol Biol 2013, 20:543-545.
- [97]Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, Godfrey JD, Willis AE, Bushell M: Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 2013, 340:82-85.
- [98]Sweeney SJ, Campbell P, Bosco G: Drosophila sticky/citron kinase is a regulator of cell-cycle progression, genetically interacts with Argonaute 1 and modulates epigenetic gene silencing. Genetics 2008, 178:1311-1325.
- [99]Kloc A, Zaratiegui M, Nora E, Martienssen R: RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 2008, 18:490-495.
- [100]Stoica C, Carmichael JB, Parker H, Pare J, Hobman TC: Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression. J Biol Chem 2006, 281:37646-37651.
- [101]Stoica C, Park J, Pare JM, Willows S, Hobman TC: The Kinesin motor protein Cut7 regulates biogenesis and function of Ago1-complexes. Traffic 2010, 11:25-36.
- [102]Li F, Goto DB, Zaratiegui M, Tang X, Martienssen R, Cande WZ: Two novel proteins, dos1 and dos2, interact with rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol 2005, 15:1448-1457.
- [103]Bologna NG, Voinnet O: The diversity, biogenesis, and activities of endogenous silencing small RNAs in arabidopsis. Annu Rev Plant Biol 2014, 65:473-503.
- [104]Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird DM, Abad P, Fleming CC, Day TA, Mousley A, Marks NJ, Maule AG: RNAi effector diversity in nematodes. PLoS Negl Trop Dis 2011, 5:e1176.
- [105]Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM: Loss and retention of RNA interference in fungi and parasites. PLoS Pathog 2013, 9:e1003089.
- [106]Sandoval PY, Swart EC, Arambasic M, Nowacki M: Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev Cell 2014, 28:174-188.
- [107]Cecere G, Hoersch S, O’Keeffe S, Sachidanandam R, Grishok A: Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat Struct Mol Biol 2014, 21:358-365.
- [108]Keeling CI, Chiu CC, Aw T, Li M, Henderson H, Tittiger C, Weng HB, Blomquist GJ, Bohlmann J: Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases. Proc Natl Acad Sci U S A 2013, 110:18838-18843.
- [109]Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK: Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 2002, 277:46849-46851.
- [110]Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatnagar RK: Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Biol Chem 2007, 282:7312-7319.
- [111]Sakurai K, Amarzguioui M, Kim DH, Alluin J, Heale B, Song MS, Gatignol A, Behlke MA, Rossi JJ: A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res 2011, 39:1510-1525.
- [112]Marques JT, Kim K, Wu PH, Alleyne TM, Jafari N, Carthew RW: Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol 2010, 17:24-30.
- [113]Williams RW, Rubin GM: ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 2002, 99:6889-6894.
- [114]Zhu L, Masaki Y, Tatsuke T, Li Z, Mon H, Xu J, Lee JM, Kusakabe T: A MC motif in silkworm Argonaute 1 is indispensible for translation repression. Insect Mol Biol 2013, 22:320-330.
- [115]Kawaoka S, Hayashi N, Suzuki Y, Abe H, Sugano S, Tomari Y, Shimada T, Katsuma S: The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA 2009, 15:1258-1264.
- [116]Czech B, Preall JB, McGinn J, Hannon GJ: A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 2013, 50:749-761.
- [117]Kasim V, Wu S, Taira K, Miyagishi M: Determination of the role of DDX3 a factor involved in mammalian RNAi pathway using an shRNA-expression library. PLoS ONE 2013, 8:e59445.
- [118]Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA: Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 2011, 6:e25709.
- [119]Bansal R, Michel AP: Core RNAi machinery and Sid1, a component for systemic RNAi, in the Hemipteran insect, Aphis glycines. Int J Mol Sci 2013, 14:3786-3801.
- [120]Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005, 309:1573-1576.
- [121]Sen GL, Blau HM: Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 2005, 7:633-636.
- [122]Negre V, Hotelier T, Volkoff AN, Gimenez S, Cousserans F, Mita K, Sabau X, Rocher J, Lopez-Ferber M, d’Alencon E, Audant P, Sabourault C, Bidegainberry V, Hilliou F, Fournier P: SPODOBASE: an EST database for the lepidopteran crop pest Spodoptera. BMC Bioinformatics 2006, 7:322.
- [123]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-229.
- [124]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
- [125]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.