期刊论文详细信息
BMC Genomics
A hyper-dynamic nature of bivalent promoter states underlies coordinated developmental gene expression modules
Philippe Collas1  Anja Oldenburg1  Akshay Shah1 
[1] Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
关键词: Transcriptome;    Promoter;    Hidden Markov Model;    Differentiation;    Chromatin state;   
Others  :  1118359
DOI  :  10.1186/1471-2164-15-1186
 received in 2014-09-29, accepted in 2014-12-15,  发布年份 2014
PDF
【 摘 要 】

Background

Chromatin remodeling is crucial for proper programing of developmental gene expression. Recent work provides a dynamic view of post-translational histone modifications during differentiation; however there is little insight on the evolution of combinatorial genome-wide patterns of chromatin marks, excluding an essential aspect of developmental gene regulation.

Results

We report here a 15-chromatin state Hidden Markov Model which describes changes in chromatin signatures in relation to transcription profiles during differentiation of human pre-adipocytes into adipocytes. We identify nineteen modules of gene expression reflecting multiple waves of transcriptional up- and down-regulation which characterize adipogenic differentiation. From our model, we developed chromatin state matrices fitting each of these transcription modules to show how the complexity and dynamic nature of chromatin signatures relate to expression patterns. Spatial relationships between chromatin states underlie a high-order chromatin organization in differentiating adipocytes. We show the importance of gene expression level in generating diversity in chromatin signatures, and show that the hyper-dynamic nature of H3K4me2/H3K27me3-marked ‘bivalent’ promoter states underlies many of the gene expression patterns associated with adipogenic differentiation.

Conclusions

Our results reveal the highly dynamic nature of bivalent promoter states within the adipogenic lineage. The data constitute a valuable resource enabling the assessment of possibilities to alter the adipogenic program.

【 授权许可】

   
2014 Shah et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150206023051431.pdf 3098KB PDF download
Figure 6. 61KB Image download
Figure 5. 93KB Image download
Figure 4. 102KB Image download
Figure 3. 148KB Image download
Figure 2. 97KB Image download
Figure 1. 134KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF, Washietl S, Arshinoff BI, Ay F, Meyer PE, Robine N, Washington NL, Di SL, Berezikov E, Brown CD, Candeias R, Carlson JW, Carr A, Jungreis I, Marbach D, Sealfon R, Tolstorukov MY, Will S, Alekseyenko AA, Artieri C, Booth BW, et al.: Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 2010, 330:1787-1797.
  • [2]Lindeman LC, Andersen IS, Reiner AH, Li N, Aanes H, Østrup O, Winata CL, Mathavan S, Müller F, Aleström P, Collas P: Pre-patterning of developmental gene expression by modified histones before zygotic genome activation. Dev Cell 2011, 21:993-1004.
  • [3]Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczynski B, Riddell A, Furlong EE: Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 2012, 44:148-156.
  • [4]Ghavi-Helm Y, Furlong EE: Analyzing transcription factor occupancy during embryo development using ChIP-seq. Methods Mol Biol 2012, 786:229-245. 229-245
  • [5]Wilczynski B, Liu YH, Yeo ZX, Furlong EE: Predicting spatial and temporal gene expression using an integrative model of transcription factor occupancy and chromatin state. PLoS Comput Biol 2012, 8:e1002798.
  • [6]Bernstein BE, Meissner A, Lander ES: The mammalian epigenome. Cell 2007, 128:669-681.
  • [7]Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA: The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 2010, 28:1045-1048.
  • [8]Zhou VW, Goren A, Bernstein BE: Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011, 12:7-18.
  • [9]Yu P, Xiao S, Xin X, Song CX, Huang W, McDee D, Tanaka T, Wang T, He C, Zhong S: Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation. Genome Res 2013, 23:352-364.
  • [10]Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I: Chromatin state dynamics during blood formation. Science 2014, 345:943-949.
  • [11]Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter HM, Mandoli A, Van ST, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG: Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345:1251086.
  • [12]Rosen ED, Spiegelman BM: Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444:847-853.
  • [13]Cristancho AG, Lazar MA: Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011, 12:722-734.
  • [14]Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S: PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol Metab 2014, 25:293-302.
  • [15]Siersbaek R, Nielsen R, Mandrup S: Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 2012, 23:56-64.
  • [16]Siersbaek R, Baek S, Rabiee A, Nielsen R, Traynor S, Clark N, Sandelin A, Jensen ON, Sung MH, Hager GL, Mandrup S: Molecular architecture of transcription factor hotspots in early adipogenesis. Cell Rep 2014, 7:1434-1442.
  • [17]Siersbaek R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, Poulsen LL, Rogowska-Wrzesinska A, Jensen ON, Mandrup S: Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep 2014, 7:1443-1455.
  • [18]Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED: Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010, 143:156-169.
  • [19]Ernst J, Kellis M: ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012, 9:215-216.
  • [20]Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods 2012, 9:473-476.
  • [21]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473:43-49.
  • [22]Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M, Elgin SC, Kuroda MI, Pirrotta V, Karpen GH, Park PJ: Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 2011, 471:480-485.
  • [23]Negre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R, Li Z, Ishii H, Spokony RF, Chen J, Hwang L, Cheng C, Auburn RP, Davis MB, Domanus M, Shah PK, Morrison CA, Zieba J, Suchy S, Senderowicz L, Victorsen A, Bild NA, Grundstad AJ, Hanley D, MacAlpine DM, Mannervik M, et al.: A cis-regulatory map of the Drosophila genome. Nature 2011, 471:527-531.
  • [24]Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, Durham T, Zhang X, Donaghey J, Epstein CB, Regev A, Bernstein BE: Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 2011, 147:1628-1639.
  • [25]Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE: Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013, 152:642-654.
  • [26]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Ntosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459:108-112.
  • [27]Lee Y, Ghosh D, Zhang Y: Regression hidden Markov modeling reveals heterogeneous gene expression regulation: a case study in mouse embryonic stem cells. BMC Genomics 2014, 15:360. BioMed Central Full Text
  • [28]Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 2014, 24:496-510.
  • [29]Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014, 32:381-386.
  • [30]Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B: Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 2010, 143:212-224.
  • [31]Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J: A unique chromatin signature uncovers early developmental enhancers in humans. Nature 2011, 470:279-283.
  • [32]Strong A, Patel K, Rader DJ: Sortilin and lipoprotein metabolism: making sense out of complexity. Curr Opin Lipidol 2014. Aug 12. [Epub ahead of print]
  • [33]Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG: Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006, 8:532-538.
  • [34]Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125:315-326.
  • [35]Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K: Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 2014, 55:347-360.
  • [36]Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D: Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat Biotechnol 2008, 26:1251-1259.
  • [37]Yosef N, Regev A: Impulse control: temporal dynamics in gene transcription. Cell 2011, 144:886-896.
  • [38]Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF: Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 2011, 25:2254-2265.
  • [39]Wu L, Li L, Zhou B, Qin Z, Dou Y: H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell 2014, 54:920-931.
  • [40]Pick H, Kilic S, Fierz B: Engineering chromatin states: Chemical and synthetic biology approaches to investigate histone modification function. Biochim Biophys Acta 1839, 2014:644-656.
  • [41]Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS: Beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 2010, 19:220-231.
  • [42]Liber D, Domaschenz R, Holmqvist PH, Mazzarella L, Georgiou A, Leleu M, Fisher AG, Labosky PA, Dillon N: Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 2010, 7:114-126.
  • [43]Zaret KS, Carroll JS: Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011, 25:2227-2241.
  • [44]Lefterova MI, Lazar MA: New developments in adipogenesis. Trends Endocrinol Metab 2009, 20:107-114.
  • [45]Chechik G, Koller D: Timing of gene expression responses to environmental changes. J Comput Biol 2009, 16:279-290.
  • [46]Lam FH, Steger DJ, O'Shea EK: Chromatin decouples promoter threshold from dynamic range. Nature 2008, 453:246-250.
  • [47]Luger K, Dechassa ML, Tremethick DJ: New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 2012, 13:436-447.
  • [48]Henikoff S: Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 2008, 9:15-26.
  • [49]Conerly ML, Teves SS, Diolaiti D, Ulrich M, Eisenman RN, Henikoff S: Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis. Genome Res 2010, 20:1383-1390.
  • [50]Soboleva TA, Nekrasov M, Ryan DP, Tremethick DJ: Histone variants at the transcription start-site. Trends Genet 2014, 30:199-209.
  • [51]Weber CM, Ramachandran S, Henikoff S: Nucleosomes Are Context-Specific, H2A.Z-Modulated Barriers to RNA Polymerase. Mol Cell 2014, 53:819-830.
  • [52]Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006, 20:1123-1136.
  • [53]Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006, 125:301-313.
  • [54]Wang L, Jin Q, Lee JE, Su IH, Ge K: Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci U S A 2010, 107:7317-7322.
  • [55]Boquest AC, Noer A, Collas P: Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev 2006, 2:319-329.
  • [56]Sørensen AL, Jacobsen BM, Reiner AH, Andersen IS, Collas P: Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Mol Biol Cell 2010, 21:2066-2077.
  • [57]Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ Jr, Lazar MA: Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 2010, 24:1035-1044.
  • [58]Buecker C, Wysocka J: Enhancers as information integration hubs in development: lessons from genomics. Trends Genet 2012, 28:276-284.
  • [59]Chepelev I, Wei G, Wangsa D, Tang Q, Zhao K: Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res 2012, 22:490-503.
  • [60]Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, et al.: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 2012, 148:84-98.
  • [61]Sanyal A, Lajoie BR, Jain G, Dekker J: The long-range interaction landscape of gene promoters. Nature 2012, 489:109-113.
  • [62]Ghavi-Helm Y, Klein FA, Pakozdi T, Ciglar L, Noordermeer D, Huber W, Furlong EE: Enhancer loops appear stable during development and are associated with paused polymerase. Nature 2014, 512:96-100.
  • [63]Boquest AC, Shahdadfar A, Fronsdal K, Sigurjonsson O, Tunheim SH, Collas P, Brinchmann JE: Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 2005, 16:1131-1141.
  • [64]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
  • [65]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578.
  • [66]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9:357-359.
  • [67]Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009, 10:48-10.
  • [68]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol 2011, 29:24-26.
  文献评价指标  
  下载次数:51次 浏览次数:12次