期刊论文详细信息
BMC Cancer
Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs
Susanne Fuessel1  Manfred P Wirth1  Michael Froehner1  Mildred Sergon2  Doreen Huebner1  Cathleen Thomae1  Knut Kaulke1  Kati Erdmann1 
[1]Department of Urology, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
[2]Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
关键词: Prostate cancer;    miR-26a;    miR-186;    microRNAs;    Enhancer of zeste homolog 2 (EZH2);    Alpha-methylacyl-CoA racemase (AMACR);    Biomarkers;   
Others  :  859075
DOI  :  10.1186/1471-2407-14-82
 received in 2013-10-01, accepted in 2014-02-04,  发布年份 2014
PDF
【 摘 要 】

Background

Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA).

Methods

In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation.

Results

The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a.

Conclusions

The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction.

【 授权许可】

   
2014 Erdmann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724072015643.pdf 671KB PDF download
40KB Image download
41KB Image download
27KB Image download
60KB Image download
19KB Image download
【 图 表 】

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61(2):69-90.
  • [2]Hori S, Blanchet JS, McLoughlin J: From prostate-specific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer. BJU Int 2013, 112(6):717-728.
  • [3]Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S, Unversucht S, Froehner M, Wirth MP, Meye A: Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 2006, 66(14):1521-1534.
  • [4]Schneider S, Voigt S, Fussel S, Lohse-Fischer A, Tomasetti S, Haase M, Koch R, Baretton GB, Grimm MO, Wirth MP: Molecular genetic markers for prostate cancer. Evidence in fine needle biopsies for improved confirmation of the diagnosis. Urologe A 2008, 47(9):1208-1211.
  • [5]Fuessel S, Sickert D, Meye A, Klenk U, Schmidt U, Schmitz M, Rost AK, Weigle B, Kiessling A, Wirth MP: Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int J Oncol 2003, 23(1):221-228.
  • [6]Kiessling A, Fussel S, Schmitz M, Stevanovic S, Meye A, Weigle B, Klenk U, Wirth MP, Rieber EP: Identification of an HLA-A*0201-restricted T-cell epitope derived from the prostate cancer-associated protein trp-p8. Prostate 2003, 56(4):270-279.
  • [7]Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, Reed SG, Xu J, Fanger GR: P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol 2001, 25(11):1397-1404.
  • [8]Lloyd MD, Darley DJ, Wierzbicki AS, Threadgill MD: Alpha-methylacyl-CoA racemase–an ‘obscure’ metabolic enzyme takes centre stage. Febs J 2008, 275(6):1089-1102.
  • [9]Zha S, Ferdinandusse S, Denis S, Wanders RJ, Ewing CM, Luo J, de Marzo AM, Isaacs WB: Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res 2003, 63(21):7365-7376.
  • [10]Simon JA, Lange CA: Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008, 647(1–2):21-29.
  • [11]Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419(6907):624-629.
  • [12]Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP: Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett 2006, 236(2):229-238.
  • [13]Weng J, Wang J, Cai Y, Stafford LJ, Mitchell D, Ittmann M, Liu M: Increased expression of prostate-specific G-protein-coupled receptor in human prostate intraepithelial neoplasia and prostate cancers. Int J Cancer 2005, 113(5):811-818.
  • [14]Xu LL, Sun C, Petrovics G, Makarem M, Furusato B, Zhang W, Sesterhenn IA, McLeod DG, Sun L, Moul JW, Srivastava S: Quantitative expression profile of PSGR in prostate cancer. Prostate Cancer Prostatic Dis 2006, 9(1):56-61.
  • [15]Rigau M, Morote J, Mir MC, Ballesteros C, Ortega I, Sanchez A, Colas E, Garcia M, Ruiz A, Abal M, Planas J, Reventos J, Doll A: PSGR and PCA3 as biomarkers for the detection of prostate cancer in urine. Prostate 2010, 70(16):1760-1767.
  • [16]Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP: Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998, 82(11):2256-2261.
  • [17]Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA: Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 2007, 38(5):696-701.
  • [18]Akhtar NH, Pail O, Saran A, Tyrell L, Tagawa ST: Prostate-specific membrane antigen-based therapeutics. Adv Urol 2012, 2012:973820.
  • [19]Osborne JR, Akhtar NH, Vallabhajosula S, Anand A, Deh K, Tagawa ST: Prostate-specific membrane antigen-based imaging. Urol Oncol 2013, 31(2):144-154.
  • [20]Henshall SM, Afar DE, Hiller J, Horvath LG, Quinn DI, Rasiah KK, Gish K, Willhite D, Kench JG, Gardiner-Garden M, Stricker PD, Scher HI, Grygiel JJ, Agus DB, Mack DH, Sutherland RL: Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 2003, 63(14):4196-4203.
  • [21]Tsavaler L, Shapero MH, Morkowski S, Laus R: Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 2001, 61(9):3760-3769.
  • [22]Zhang L, Barritt GJ: Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 2004, 64(22):8365-8373.
  • [23]Gregory RI, Shiekhattar R: MicroRNA biogenesis and cancer. Cancer Res 2005, 65(9):3509-3512.
  • [24]Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6(4):259-269.
  • [25]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103(7):2257-2261.
  • [26]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005, 435(7043):834-838.
  • [27]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-866.
  • [28]Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, Yfantis HG, Stephens RM, Croce CM: Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008, 68(15):6162-6170.
  • [29]Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, Bangma CH, Litman T, Visakorpi T, Jenster G: Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012, 31(8):978-991.
  • [30]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res 2007, 67(13):6130-6135.
  • [31]Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stohr R, Hartmann A, Wullich B, Grasser F: The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 2010, 8(4):529-538.
  • [32]Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T, Dyrskjot L, Eltze E, Wieland W, Keck B, Ekici AB, Grasser F, Wullich B: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 2012, 130(3):611-621.
  • [33]Walter BA, Valera VA, Pinto PA, Merino MJ: Comprehensive microRNA profiling of prostate cancer. J Cancer Educ 2013, 4(5):350-357.
  • [34]Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007, 39(5):673-677.
  • [35]Kent OA, Mendell JT: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006, 25(46):6188-6196.
  • [36]Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G: MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 2010, 9:108. BioMed Central Full Text
  • [37]Kisliouk T, Yosefi S, Meiri N: MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur J Neurosci 2011, 33(2):224-235.
  • [38]Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, de Marzo AM: Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2011, 2(9):669-683.
  • [39]Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhou X: MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 2011, 440(1):23-31.
  • [40]Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008, 322(5908):1695-1699.
  • [41]Carlsson J, Helenius G, Karlsson M, Lubovac Z, Andren O, Olsson B, Klinga-Levan K: Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet Cytogenet 2010, 202(2):71-75.
  • [42]Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N: Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol 2008, 9:76. BioMed Central Full Text
  • [43]Mavridis K, Stravodimos K, Scorilas A: Downregulation and prognostic performance of MicroRNA 224 expression in prostate cancer. Clin Chem 2013, 59(1):261-269.
  • [44]Kunze D, Kraemer K, Erdmann K, Froehner M, Wirth MP, Fuessel S: Simultaneous siRNA-mediated knockdown of antiapoptotic BCL2, Bcl-xL, XIAP and survivin in bladder cancer cells. Int J Oncol 2012, 41:1271-1277.
  • [45]Yao V, Parwani A, Maier C, Heston WD, Bacich DJ: Moderate expression of prostate-specific membrane antigen, a tissue differentiation antigen and folate hydrolase, facilitates prostate carcinogenesis. Cancer Res 2008, 68(21):9070-9077.
  • [46]Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K, Stephan C, Jung K: MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol 2010, 28(1):4-13.
  • [47]Schaefer A, Stephan C, Busch J, Yousef GM, Jung K: Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 2010, 7(5):286-297.
  文献评价指标  
  下载次数:29次 浏览次数:22次