期刊论文详细信息
BMC Microbiology
Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry
Bradford W Gibson2  Michael A Apicella3  Alexandria Sahu1  Nancy J Phillips2  Margaret R Ketterer3  Jason M Held4  Deborah MB Post1 
[1] The Buck Institute for Research on Aging, Novato 94945, CA, USA;The University of California San Francisco, San Francisco 94143, CA, USA;The University of Iowa, Iowa City 52242, IA, USA;Washington University School of Medicine, St. Louis 63110, MO, USA
关键词: Mass spectrometry;    Biofilms;    Metabolic labeling;    Non-typeable Haemophilus influenzae;   
Others  :  1090197
DOI  :  10.1186/s12866-014-0329-9
 received in 2014-09-15, accepted in 2014-12-16,  发布年份 2014
【 摘 要 】

Background

Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either “light” (L) isoleucine or “heavy” (H) 13C6-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence.

Results

Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration control protein ArcA, NAD nucleotidase and heme-binding protein A.

Conclusions

The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring necessary cofactors important for biofilm survival.

【 授权许可】

   
2014 Post et al.; licensee BioMed Central.

附件列表
Files Size Format View
31KB Image download
Figure 4. 20KB Image download
Figure 3. 40KB Image download
Figure 2. 33KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Agrawal A, Murphy TF: Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. J Clin Microbiol 2011, 49(11):3728-3732.
  • [2]Erwin AL, Smith AL: Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol 2007, 15(8):355-362.
  • [3]Foxwell AR, Kyd JM, Cripps AW: Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol Mol Biol Rev 1998, 62(2):294-308.
  • [4]Murphy TF, Faden H, Bakaletz LO, Kyd JM, Forsgren A, Campos J, Virji M, Pelton SI: Nontypeable Haemophilus influenzae as a pathogen in children. Pediatr Infect Dis J 2009, 28(1):43-48.
  • [5]Moghaddam SJ, Ochoa CE, Sethi S, Dickey BF: Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer. Int J Chron Obstruct Pulmon Dis 2011, 6:113-123.
  • [6]Greiner LL, Watanabe H, Phillips NJ, Shao J, Morgan A, Zaleski A, Gibson BW, Apicella MA: Nontypeable Haemophilus influenzae strain 2019 produces a biofilm containing N-acetylneuraminic acid that may mimic sialylated O-linked glycans. Infect Immun 2004, 72(7):4249-4260.
  • [7]Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Wackym PA, Stoodley P, Post JC, Ehrlich GD, Kerschner JE: Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006, 296(2):202-211.
  • [8]Hong W, Mason K, Jurcisek J, Novotny L, Bakaletz LO, Swords WE: Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a chinchilla model of otitis media. Infect Immun 2007, 75(2):958-965.
  • [9]Hong W, Pang B, West-Barnette S, Swords WE: Phosphorylcholine expression by nontypeable Haemophilus influenzae correlates with maturation of biofilm communities in vitro and in vivo. J Bacteriol 2007, 189(22):8300-8307.
  • [10]Jurcisek J, Greiner L, Watanabe H, Zaleski A, Apicella MA, Bakaletz LO: Role of sialic acid and complex carbohydrate biosynthesis in biofilm formation by nontypeable Haemophilus influenzae in the chinchilla middle ear. Infect Immun 2005, 73(6):3210-3218.
  • [11]Murphy TF, Kirkham C: Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC Microbiol 2002, 2:7. BioMed Central Full Text
  • [12]Swords WE, Moore ML, Godzicki L, Bukofzer G, Mitten MJ, VonCannon J: Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infect Immun 2004, 72(1):106-113.
  • [13]Banat IM, De Rienzo MA, Quinn GA: Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 2014, 98(24): 9915–29.
  • [14]Fux CA, Costerton JW, Stewart PS, Stoodley P: Survival strategies of infectious biofilms. Trends Microbiol 2005, 13(1):34-40.
  • [15]Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O: Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010, 35(4):322-332.
  • [16]Seneviratne CJ, Wang Y, Jin L, Wong SS, Herath TD, Samaranayake LP: Unraveling the resistance of microbial biofilms: has proteomics been helpful? Proteomics 2012, 12(4–5):651-665.
  • [17]Bakaletz LO: Bacterial biofilms in otitis media: evidence and relevance. Pediatr Infect Dis J 2007, 26(10 Suppl):S17-S19.
  • [18]Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G: The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 2003, 112(10):1466-1477.
  • [19]Kyd JM, McGrath J, Krishnamurthy A: Mechanisms of bacterial resistance to antibiotics in infections of COPD patients. Curr Drug Targets 2011, 12(4):521-530.
  • [20]Flemming HC, Wingender J: The biofilm matrix. Nat Rev Microbiol 2010, 8(9):623-633.
  • [21]Allen S, Zaleski A, Johnston JW, Gibson BW, Apicella MA: Novel sialic acid transporter of Haemophilus influenzae. Infect Immun 2005, 73(9):5291-5300.
  • [22]Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS Jr: Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005, 73(3):1635-1643.
  • [23]Carruthers MD, Tracy EN, Dickson AC, Ganser KB, Munson RS Jr, Bakaletz LO: Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons. J Bacteriol 2012, 194(8):1927-1933.
  • [24]Izano EA, Shah SM, Kaplan JB: Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb Pathog 2009, 46(4):207-213.
  • [25]Jurcisek JA, Bakaletz LO: Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol 2007, 189(10):3868-3875.
  • [26]Lanucara F, Eyers CE: Mass spectrometric-based quantitative proteomics using SILAC. Methods Enzymol 2011, 500:133-150.
  • [27]Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1(5):376-386.
  • [28]Ong SE, Mann M: Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005, 1(5):252-262.
  • [29]Dreisbach A, Otto A, Becher D, Hammer E, Teumer A, Gouw JW, Hecker M, Volker U: Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques. Proteomics 2008, 8(10):2062-2076.
  • [30]Phillips NJ, Steichen CT, Schilling B, Post DM, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW: Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS One 2012, 7(6):e38303.
  • [31]Ruiz L, Coute Y, Sanchez B, de los Reyes-Gavilan CG, Sanchez JC, Margolles A: The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 2009, 155(Pt 3):957-967.
  • [32]Soufi B, Kumar C, Gnad F, Mann M, Mijakovic I, Macek B: Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res 2010, 9(7):3638-3646.
  • [33]Yu JL, Guo L: Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res 2011, 10(7):2992-3002.
  • [34]Campagnari AA, Gupta MR, Dudas KC, Murphy TF, Apicella MA: Antigenic diversity of lipooligosaccharides of nontypable Haemophilus influenzae. Infect Immun 1987, 55(4):882-887.
  • [35]Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP: Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413(6858):860-864.
  • [36]Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA: The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 2007, 6(9):1638-1655.
  • [37]Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R, Carson MB, Zhong H, Gipson J, Gipson M, Johnson LS, Lewis L, Bakaletz LO, Munson RS Jr: Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 2005, 187(13):4627-4636.
  • [38]Tang WH, Shilov IV, Seymour SL: Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 2008, 7(9):3661-3667.
  • [39]J. Craig Venter Institute Comprehensive Microbial Resource.http://cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi
  • [40]Protein knowledgebase (UniProtKB).http://www.uniprot.org/
  • [41]Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26(13):1608-1615.
  • [42]Maclean B, Tomazela DM, Abbatiello SE, Zhang S, Whiteaker JR, Paulovich AG, Carr SA, Maccoss MJ: Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal Chem 2010, 82(24):10116-10124.
  • [43]MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26(7):966-968.
  • [44]Post D, JM Held, MR Ketterer, NJ Phillips, A Sahu, MA Apicella, and BW Gibson: Haemophilus influezae proteomics data from unlabeled planktonic and metabolically labeled biofilm samples.massIVE ftp siteftp://MSV000078838@massive.ucsd.edu.
  • [45]KEGG website.http://www.genome.jp/kegg/
  • [46]Qu J, Lesse AJ, Brauer AL, Cao J, Gill SR, Murphy TF: Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses. BMC Microbiol 2010, 10:162. BioMed Central Full Text
  • [47]van der Woude MW: Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 2011, 14(2):205-211.
  • [48]Weiser JN: The generation of diversity by Haemophilus influenzae. Trends Microbiol 2000, 8(10):433-435.
  • [49]De Bolle X, Bayliss CD, Field D, van de Ven T, Saunders NJ, Hood DW, Moxon ER: The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 2000, 35(1):211-222.
  • [50]Poole J, Foster E, Chaloner K, Hunt J, Jennings MP, Bair T, Knudtson K, Christensen E, Munson RS Jr, Winokur PL, Apicella MA: Analysis of nontypeable haemophilus influenzae phase-variable genes during experimental human nasopharyngeal colonization. J Infect Dis 2013, 208(5):720-727.
  • [51]van Ham SM, van Alphen L, Mooi FR, van Putten JP: Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 1993, 73(6):1187-1196.
  • [52]Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS: Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2004, 70(10):6188-6196.
  • [53]Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I: Small molecules are natural triggers for the disassembly of biofilms. Trends Microbiol 2013, 21(11):594-601.
  • [54]Klausen M, Gjermansen M, Kreft JU, Tolker-Nielsen T: Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol Lett 2006, 261(1):1-11.
  • [55]Pang B, Hong W, Kock ND, Swords WE: Dps promotes survival of nontypeable Haemophilus influenzae in biofilm communities in vitro and resistance to clearance in vivo. Front Cell Infect Microbiol 2012, 2:58.
  • [56]Gawronski JD, Wong SM, Giannoukos G, Ward DV, Akerley BJ: Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 2009, 106(38):16422-16427.
  • [57]Murphy TF, Kirkham C, Sethi S, Lesse AJ: Expression of a peroxiredoxin-glutaredoxin by Haemophilus influenzae in biofilms and during human respiratory tract infection. FEMS Immunol Med Microbiol 2005, 44(1):81-89.
  • [58]Hall-Stoodley L, Stoodley P: Evolving concepts in biofilm infections. Cell Microbiol 2009, 11(7):1034-1043.
  • [59]Martinez JL, Rojo F: Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev 2011, 35(5):768-789.
  • [60]Fux CA, Wilson S, Stoodley P: Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 2004, 186(14):4486-4491.
  • [61]Anderl JN, Zahller J, Roe F, Stewart PS: Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2003, 47(4):1251-1256.
  • [62]De Souza-Hart JA, Blackstock W, Di Modugno V, Holland IB, Kok M: Two-component systems in Haemophilus influenzae: a regulatory role for ArcA in serum resistance. Infect Immun 2003, 71(1):163-172.
  • [63]Georgellis D, Kwon O, Lin EC, Wong SM, Akerley BJ: Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J Bacteriol 2001, 183(24):7206-7212.
  • [64]Wong SM, Alugupalli KR, Ram S, Akerley BJ: The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Mol Microbiol 2007, 64(5):1375-1390.
  • [65]Responses to molecular oxygen. DC ASM Press, Washington; 1996.
  • [66]Othman DS, Schirra H, McEwan AG, Kappler U: Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis. Front Microbiol 2014, 5:69.
  • [67]Kemmer G, Reilly TJ, Schmidt-Brauns J, Zlotnik GW, Green BA, Fiske MJ, Herbert M, Kraiss A, Schlor S, Smith A, Reidl J: NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae. J Bacteriol 2001, 183(13):3974-3981.
  • [68]Reidl J, Schlor S, Kraiss A, Schmidt-Brauns J, Kemmer G, Soleva E: NADP and NAD utilization in Haemophilus influenzae. Mol Microbiol 2000, 35(6):1573-1581.
  • [69]Mason KM, Raffel FK, Ray WC, Bakaletz LO: Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J Bacteriol 2011, 193(10):2527-2535.
  • [70]Cope LD, Thomas SE, Latimer JL, Slaughter CA, Muller-Eberhard U, Hansen EJ: The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol 1994, 13(5):863-873.
  • [71]Hanson MS, Slaughter C, Hansen EJ: The hbpA gene of Haemophilus influenzae type b encodes a heme-binding lipoprotein conserved among heme-dependent Haemophilus species. Infect Immun 1992, 60(6):2257-2266.
  • [72]Jarosik GP, Sanders JD, Cope LD, Muller-Eberhard U, Hansen EJ: A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b. Infect Immun 1994, 62(6):2470-2477.
  • [73]Maciver I, Latimer JL, Liem HH, Muller-Eberhard U, Hrkal Z, Hansen EJ: Identification of an outer membrane protein involved in utilization of hemoglobin-haptoglobin complexes by nontypeable Haemophilus influenzae. Infect Immun 1996, 64(9):3703-3712.
  • [74]Morton DJ, Bakaletz LO, Jurcisek JA, VanWagoner TM, Seale TW, Whitby PW, Stull TL: Reduced severity of middle ear infection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin-haptoglobin binding proteins (Hgp) in a chinchilla model of otitis media. Microb Pathog 2004, 36(1):25-33.
  • [75]Morton DJ, Madore LL, Smith A, Vanwagoner TM, Seale TW, Whitby PW, Stull TL: The heme-binding lipoprotein (HbpA) of Haemophilus influenzae: role in heme utilization. FEMS Microbiol Lett 2005, 253(2):193-199.
  • [76]Morton DJ, Smith A, Ren Z, Madore LL, VanWagoner TM, Seale TW, Whitby PW, Stull TL: Identification of a haem-utilization protein (Hup) in Haemophilus influenzae. Microbiology 2004, 150(Pt 12):3923-3933.
  • [77]Sanders JD, Cope LD, Hansen EJ: Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 1994, 62(10):4515-4525.
  • [78]Hanson MS, Hansen EJ: Molecular cloning, partial purification, and characterization of a haemin-binding lipoprotein from Haemophilus influenzae type b. Mol Microbiol 1991, 5(2):267-278.
  • [79]Vergauwen B, Elegheert J, Dansercoer A, Devreese B, Savvides SN: Glutathione import in Haemophilus influenzae Rd is primed by the periplasmic heme-binding protein HbpA. Proc Natl Acad Sci U S A 2010, 107(30):13270-13275.
  • [80]Morton DJ, Seale TW, Bakaletz LO, Jurcisek JA, Smith A, VanWagoner TM, Whitby PW, Stull TL: The heme-binding protein (HbpA) of Haemophilus influenzae as a virulence determinant. Int J Med Microbiol 2009, 299(7):479-488.
  • [81]Cain JA, Solis N, Cordwell SJ: Beyond gene expression: The impact of protein post-translational modifications in bacteria. J Proteomics 2014, 97:265-286.
  文献评价指标  
  下载次数:0次 浏览次数:5次