期刊论文详细信息
BMC Genomics
Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants
William F. Burkholder1  Stephen R. Quake2  Yao Min Ong1  Alexandre Kuhn1 
[1] Microfluidics Systems Biology Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos Building, Room #03-04, 61 Biopolis Drive, Singapore 138673, Singapore;Visiting Investigator, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
关键词: Alu;    LINE-1;    Next-generation sequencing;    Structural variation;    Transposable element;    Genotyping;   
Others  :  1219103
DOI  :  10.1186/s12864-015-1700-4
 received in 2015-05-20, accepted in 2015-06-15,  发布年份 2015
PDF
【 摘 要 】

Background

Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed.

Results

We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate.

Conclusions

This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

【 授权许可】

   
2015 Kuhn et al.

【 预 览 】
附件列表
Files Size Format View
20150715041803442.pdf 1994KB PDF download
Fig. 5. 60KB Image download
Fig. 4. 43KB Image download
Fig. 3. 89KB Image download
Fig. 2. 22KB Image download
Fig. 1. 26KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009; 10:691-703.
  • [2]Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al.. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420:520-62.
  • [3]Lee YCG, Langley CH. Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc B Biol Sci. 2010; 365:1219-28.
  • [4]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al.. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326:1112-5.
  • [5]Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012; 22:191-203.
  • [6]Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet. 2006; 2:e2.
  • [7]Sakano H, Hüppi K, Heinrich G, Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 1979; 280:288-94.
  • [8]Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L et al.. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000; 403:785-9.
  • [9]Cordaux R, Lee J, Dinoso L, Batzer MA. Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. Gene. 2006; 373:138-44.
  • [10]Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet. 2011; 43:1154-9.
  • [11]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al.. Initial sequencing and analysis of the human genome. Nature. 2001; 409:860-921.
  • [12]Burns KH, Boeke JD. Human transposon tectonics. Cell. 2012; 149:740-52.
  • [13]Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM et al.. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 2011; 7:e1002236.
  • [14]Kuhn A, Ong YM, Cheng C-Y, Wong TY, Quake SR, Burkholder WF. Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome. Proc Natl Acad Sci U S A. 2014; 111:8131-6.
  • [15]Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F et al.. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011; 479:534-7.
  • [16]Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ et al.. Landscape of somatic retrotransposition in human cancers. Science. 2012; 337:967-71.
  • [17]Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity. 2011; 106:520-30.
  • [18]Watkins WS, Ricker CE, Bamshad MJ, Carroll ML, Nguyen SV, Batzer MA et al.. Patterns of ancestral human diversity: an analysis of Alu-insertion and restriction-site polymorphisms. Am J Hum Genet. 2001; 68:738-52.
  • [19]Witherspoon DJ, Zhang Y, Xing J, Watkins WS, Ha H, Batzer MA et al.. Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations. Genome Res. 2013; 23:1170-81.
  • [20]Van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’hauw M et al.. Transposon Display identifies individual transposable elements in high copy number lines. Plant J Cell Mol Biol. 1998; 13:121-9.
  • [21]Ewing AD, Kazazian HH. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 2010; 20:1262-70.
  • [22]Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF et al.. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010; 141:1253-61.
  • [23]Newman TL, Rieder MJ, Morrison VA, Sharp AJ, Smith JD, Sprague LJ et al.. High-throughput genotyping of intermediate-size structural variation. Hum Mol Genet. 2006; 15:1159-67.
  • [24]Lam HYK, Mu XJ, Stütz AM, Tanzer A, Cayting PD, Snyder M et al.. Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nat Biotechnol. 2010; 28:47-55.
  • [25]Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002; 3:370-9.
  • [26]Lin Z, Cui X, Li H. Multiplex genotype determination at a large number of gene loci. Proc Natl Acad Sci U S A. 1996; 93:2582-7.
  • [27]Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al.. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012; 40:e115.
  • [28]Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002; 12:656-64.
  • [29]Vallone PM, Butler JM. AutoDimer: a screening tool for primer-dimer and hairpin structures. BioTechniques. 2004; 37:226-31.
  • [30]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357-9.
  • [31]R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2011.
  • [32]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al.. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5:R80. BioMed Central Full Text
  • [33]Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinforma Oxf Engl. 2009; 25:2607-8.
  • [34]Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinforma Oxf Engl. 2009; 25:1841-2.
  • [35]Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P, Morgan M. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinforma Oxf Engl. 2014; 30(14):2076-8.
  • [36]Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc. 2002; 97:611-31.
  • [37]Fraley C, Raftery AE, Murphy TB, Scrucca L. Mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation. Technical report . Department of Statistics, University of Washington; 2012.
  • [38]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al.. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43:491-8.
  文献评价指标  
  下载次数:73次 浏览次数:11次