BMC Genomics | |
Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants | |
William F. Burkholder1  Stephen R. Quake2  Yao Min Ong1  Alexandre Kuhn1  | |
[1] Microfluidics Systems Biology Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos Building, Room #03-04, 61 Biopolis Drive, Singapore 138673, Singapore;Visiting Investigator, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore | |
关键词: Alu; LINE-1; Next-generation sequencing; Structural variation; Transposable element; Genotyping; | |
Others : 1219103 DOI : 10.1186/s12864-015-1700-4 |
|
received in 2015-05-20, accepted in 2015-06-15, 发布年份 2015 | |
【 摘 要 】
Background
Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed.
Results
We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate.
Conclusions
This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.
【 授权许可】
2015 Kuhn et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150715041803442.pdf | 1994KB | download | |
Fig. 5. | 60KB | Image | download |
Fig. 4. | 43KB | Image | download |
Fig. 3. | 89KB | Image | download |
Fig. 2. | 22KB | Image | download |
Fig. 1. | 26KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009; 10:691-703.
- [2]Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al.. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002; 420:520-62.
- [3]Lee YCG, Langley CH. Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc B Biol Sci. 2010; 365:1219-28.
- [4]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al.. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326:1112-5.
- [5]Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012; 22:191-203.
- [6]Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet. 2006; 2:e2.
- [7]Sakano H, Hüppi K, Heinrich G, Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 1979; 280:288-94.
- [8]Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L et al.. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000; 403:785-9.
- [9]Cordaux R, Lee J, Dinoso L, Batzer MA. Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. Gene. 2006; 373:138-44.
- [10]Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet. 2011; 43:1154-9.
- [11]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al.. Initial sequencing and analysis of the human genome. Nature. 2001; 409:860-921.
- [12]Burns KH, Boeke JD. Human transposon tectonics. Cell. 2012; 149:740-52.
- [13]Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM et al.. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 2011; 7:e1002236.
- [14]Kuhn A, Ong YM, Cheng C-Y, Wong TY, Quake SR, Burkholder WF. Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome. Proc Natl Acad Sci U S A. 2014; 111:8131-6.
- [15]Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F et al.. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011; 479:534-7.
- [16]Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ et al.. Landscape of somatic retrotransposition in human cancers. Science. 2012; 337:967-71.
- [17]Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity. 2011; 106:520-30.
- [18]Watkins WS, Ricker CE, Bamshad MJ, Carroll ML, Nguyen SV, Batzer MA et al.. Patterns of ancestral human diversity: an analysis of Alu-insertion and restriction-site polymorphisms. Am J Hum Genet. 2001; 68:738-52.
- [19]Witherspoon DJ, Zhang Y, Xing J, Watkins WS, Ha H, Batzer MA et al.. Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations. Genome Res. 2013; 23:1170-81.
- [20]Van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’hauw M et al.. Transposon Display identifies individual transposable elements in high copy number lines. Plant J Cell Mol Biol. 1998; 13:121-9.
- [21]Ewing AD, Kazazian HH. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 2010; 20:1262-70.
- [22]Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF et al.. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010; 141:1253-61.
- [23]Newman TL, Rieder MJ, Morrison VA, Sharp AJ, Smith JD, Sprague LJ et al.. High-throughput genotyping of intermediate-size structural variation. Hum Mol Genet. 2006; 15:1159-67.
- [24]Lam HYK, Mu XJ, Stütz AM, Tanzer A, Cayting PD, Snyder M et al.. Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nat Biotechnol. 2010; 28:47-55.
- [25]Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002; 3:370-9.
- [26]Lin Z, Cui X, Li H. Multiplex genotype determination at a large number of gene loci. Proc Natl Acad Sci U S A. 1996; 93:2582-7.
- [27]Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al.. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012; 40:e115.
- [28]Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002; 12:656-64.
- [29]Vallone PM, Butler JM. AutoDimer: a screening tool for primer-dimer and hairpin structures. BioTechniques. 2004; 37:226-31.
- [30]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357-9.
- [31]R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2011.
- [32]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al.. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5:R80. BioMed Central Full Text
- [33]Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinforma Oxf Engl. 2009; 25:2607-8.
- [34]Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinforma Oxf Engl. 2009; 25:1841-2.
- [35]Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P, Morgan M. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinforma Oxf Engl. 2014; 30(14):2076-8.
- [36]Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc. 2002; 97:611-31.
- [37]Fraley C, Raftery AE, Murphy TB, Scrucca L. Mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation. Technical report . Department of Statistics, University of Washington; 2012.
- [38]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al.. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43:491-8.