期刊论文详细信息
BMC Microbiology
Genomic sequence of temperate phage Smp131 of Stenotrophomonas maltophilia that has similar prophages in xanthomonads
Shu-Fen Weng3  Juey-Wen Lin1  Hsiao-Chuan Chang3  Tsai-Tien Tseng2  Chia-Ni Lee3 
[1] Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan;Department of Biology and Chemistry, Southern Polytechnic State University, Marietta, GA 30060, USA;Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
关键词: Xanthomonas;    Temperate phage;    Stenotrophomonas;    Prophage;    Integration;    Genomic sequence;   
Others  :  1142098
DOI  :  10.1186/1471-2180-14-17
 received in 2013-07-18, accepted in 2014-01-25,  发布年份 2014
PDF
【 摘 要 】

Background

Stenotrophomonas maltophilia is a ubiquitous Gram-negative bacterium previously named as Xanthomonas maltophilia. This organism is an important nosocomial pathogen associated with infections in immunocompromised patients. Clinical isolates of S. maltophilia are mostly resistant to multiple antibiotics and treatment of its infections is becoming problematic. Several virulent bacteriophages, but not temperate phage, of S. maltophilia have been characterized.

Results

In this study, a temperate myophage of S. maltophilia (Smp131) was isolated and characterized. Sequence analysis showed that its genome is 33,525-bp long with 47 open reading frames (ORFs). Its similarity to P2-like phages and prophages in S. maltophilia and several Xanthomonas pathovars includes genomic organization, arrangement of several operons, and possession of a slippery sequence T7G for translational frameshifting in tail assembly genes. Smp131 encodes a tyrosine family integrase that shares low degrees of similarity with those of other phages and a lysin belonging to family 19 chitinase that is observed in plants and some bacteria, although not in phages. tRNA are the preferred sites for host integration of Smp131 and the related phages: tRNA-Thr for Smp131 and prophage of S. maltophilia K279a; tRNA-Lys for prophages of X. campestris pv. campestris ATCC33913, X. oryzae pv. oryzae strains MAFF311018, and KACC10331; and tRNA-Asn for prophage of X. oryzae pv. oryzae PXO99A and remnant of X. axonopodis pv. citri 306. Regions flanking the prophages are varied highly in nucleotide sequence and rich in transposase genes, suggesting that frequent insertion/excision had occurred.

Conclusions

Prevalence of closely related prophages in Stenotrophomonas and Xanthomonads may have contributed to the diversity of these closely related species owing to possible horizontal gene transfer mediated by the phages.

【 授权许可】

   
2014 Lee et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327215113186.pdf 1523KB PDF download
Figure 4. 72KB Image download
Figure 3. 69KB Image download
Figure 2. 47KB Image download
Figure 4. 62KB Image download
【 图 表 】

Figure 4.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Palleroni NJ, Bradbury JF: Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 1993, 43:606-609.
  • [2]Roilides E, Butler KM, Husson RN, Mueller BU, Lewis LL, Pizzo PA: Pseudomonas infections in children with human immunodeficiency virus infection. Pediatr Infect Dis J 1992, 11:547-553.
  • [3]Vartivarian SE, Papadakis KA, Anaissie EJ: Stenotrophomonas (Xanthomonas) maltophilia urinary tract infection. A disease that is usually severe and complicated. Arch Intern Med 1996, 156:433-435.
  • [4]Chang HC, Chen CR, Lin JW, Shen GH, Chang KM, Tseng YH, Weng SF: Isolation and characterization of novel giant Stenotrophomonas maltophilia phage phiSMA5. Appl Environ Microbiol 2005, 71:1387-1393.
  • [5]Caylan R, Kaklikkaya N, Aydin K, Aydin F, Yilmaz G, Ozgumus B, Koksal I: An epidemiological analysis of Stenotrophomonas maltophilia strains in a university hospital. Jpn J Infect Dis 2004, 57:37-40.
  • [6]Milne KE, Gould IM: Combination antimicrobial susceptibility testing of multidrug-resistant Stenotrophomonas maltophilia from cystic fibrosis patients. Antimicrob Agents Chemother 2012, 56:4071-4077.
  • [7]Harper DR, Enright MC: Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 2011, 111:1-7.
  • [8]Chen CR, Lin CH, Lin JW, Chang CI, Tseng YH, Weng SF: Characterization of a novel T4-type Stenotrophomonas maltophilia virulent phage Smp14. Arch Microbiol 2007, 188:191-197.
  • [9]Huang Y, Fan H, Pei G, Fan H, Zhang Z, An X, Mi Z, Shi T, Tong Y: Complete genome sequence of IME15, the first T7-like bacteriophage lytic to pan-antibiotic-resistant Stenotrophomonas maltophilia. J Virol 2012, 86:13839-13840.
  • [10]Fan H, Huang Y, Mi Z, Yin X, Wang L, Fan H, Zhang Z, An X, Chen J, Tong Y: Complete Genome Sequence of IME13, a Stenotrophomonas maltophilia bacteriophage with large burst size and unique plaque polymorphism. J Virol 2012, 86:11392-11393.
  • [11]Liu J, Chen P, Zheng C, Huang YP: Characterization of maltocin P28, a novel phage tail-like bacteriocin from Stenotrophomonas maltophilia. Appl Environ Microbiol 2013, 79:5593-5600.
  • [12]Hagemann M, Hasse D, Berg G: Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Arch Microbiol 2006, 185:449-458.
  • [13]Liu J, Liu Q, Shen P, Huang YP: Isolation and characterization of a novel filamentous phage from Stenotrophomonas maltophilia. Arch Virol 2012, 157:1643-1650.
  • [14]Petrova M, Shcherbatova N, Kurakov A, Mindlin S: Genomic characterization and integrative properties of phiSMA6 and phiSMA7, two novel filamentous bacteriophages of Stenotrophomonas maltophilia. Arch Virol 2013. [Epub ahead of print]
  • [15]Lee CN, Lin JW, Chow TY, Tseng YH, Weng SF: A novel lysozyme from Xanthomonas oryzae phage ϕXo411 active against Xanthomonas and Stenotrophomonas. Protein Expr Purif 2006, 50:229-237.
  • [16]Wagner PL, Waldor MK: Bacteriophage control of bacterial virulence. Infect Immun 2002, 70:3985-3993.
  • [17]Bertani LE, Six EW: The P2-like phages and their parasite. In The bacteriophages, Volume 2. 4th edition. Edited by Calendar R. New York, N.Y: Plenum Publishing Corp; 1988:73-143.
  • [18]Ziermann R, Calendar R: Characterization of the cos sites of bacteriophages P2 and P4. Gene 1990, 96:9-15.
  • [19]Padmanabhan R, Wu R, Calendar R: Complete nucleotide sequence of the cohesive ends of bacteriophage P2 deoxyribonucleic acid. J Biol Chem 1974, 249:6197-6207.
  • [20]Savva CG, Dewey JS, Deaton J, White RL, Struck DK, Holzenburg A, Young R: The holin of bacteriophage lambda forms rings with large diameter. Mol Microbiol 2008, 69:784-793.
  • [21]Huet J, Rucktooa P, Clantin B, Azarkan M, Looze Y, Villeret V, Wintjens R: X-ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases. Biochemistry 2008, 47:8283-8291.
  • [22]Hoell IA, Dalhus B, Heggset EB, Aspmo SI, Eijsink VG: Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes. FEBS J 2006, 273:4889-4900.
  • [23]Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K: Plant chitinases. Plant J 1993, 3:31-40.
  • [24]da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, et al.: Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417:459-463.
  • [25]Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu L, Glodek A, Kelley JM, Weidman JF, Phillipps CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269:496-512.
  • [26]Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, et al.: DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000, 406:477-483.
  • [27]Kawase T, Saito A, Sato T, Kanai R, Fujii T, Nikaidou N, Miyashita K, Watanabe T: Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl Environ Microbiol 2004, 70:1135-1144.
  • [28]Linderoth NA, Julien B, Flick KE, Calendar R, Christie GE: Molecular cloning and characterization of bacteriophage P2 genes R and S involved in tail completion. Virology 1994, 200:347-359.
  • [29]Haggard-Ljungquist E, Halling C, Calendar R: DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J Bacteriol 1992, 174:1462-1477.
  • [30]Lengyel JA, Goldstein RN, Marsh M, Calendar R: Structure of the bacteriophage P2 tail. Virology 1974, 62:161-174.
  • [31]Christie GE, Temple LM, Bartlett BA, Goodwin TS: Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 2002, 184:6522-6531.
  • [32]Levin ME, Hendrix RW, Casjens SR: A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J Mol Biol 1993, 234:124-139.
  • [33]Xu J, Hendrix RW, Duda RL: Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 2004, 16:11-21.
  • [34]Grainge I, Jayaram M: The integrase family of recombinase: organization and function of the active site. Mol Microbiol 1999, 33:449-456.
  • [35]Geer LY, Domrachev M, Lipman DJ, Bryant SH: CDART: protein homology by domain architecture. Genome Res 2002, 12:1619-1623.
  • [36]Christie GE, Calendar R: Bacteriophage P2 late promoters. II. Comparison of the four late promoter sequences. J Mol Biol 1985, 181:373-382.
  • [37]Julien B, Calendar R: Purification and characterization of the bacteriophage P4 delta protein. J Bacteriol 1995, 177:3743-3751.
  • [38]Lee TC, Christie GE: Purification and properties of the bacteriophage P2 ogr gene product. A prokaryotic zinc-binding transcriptional activator. J Biol Chem 1990, 265:7472-7477.
  • [39]Pountney DL, Tiwari RP, Egan JB: Metal- and DNA-binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186: a prokaryotic C4 zinc-finger protein. Protein Sci 1997, 6:892-902.
  • [40]Barreiro V, Haggard-Ljungquist E: Attachment sites for bacteriophage P2 on the Escherichia coli chromosome: DNA sequences, localization on the physical map, and detection of a P2-like remnant in E. coli K-12 derivatives. J Bacteriol 1992, 174:4086-4093.
  • [41]Rocco F, De Gregorio E, Colonna B, Di Nocera PP: Stenotrophomonas maltophilia genomes: a start-up comparison. Int J Med Microbiol 2009, 299:535-546.
  • [42]Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB: The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome biol 2008, 9:R74. BioMed Central Full Text
  • [43]Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D: Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 2009, 75:748-757.
  • [44]Yen MR, Lin NT, Hung CH, Choy KT, Weng SF, Tseng YH: oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 2002, 68:2924-2933.
  • [45]Yu A, Haggård-Ljungquist E: Characterization of the binding sites of two proteins involved in the bacteriophage P2 site-specific recombination system. J Bacteriol 1993, 175:1239-1249.
  • [46]Miller JH: Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972.
  • [47]Sambrook J, Russell DW: Molecular cloning: a laboratory manual. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2001.
  • [48]Lee CN, Hu RM, Chow TY, Lin JW, Chen HY, Tseng YH, Weng SF: Comparison of genomes of three Xanthomonas oryzae bacteriophages. BMC genomics 2007, 8:442. BioMed Central Full Text
  • [49]Lee CN, Lin JW, Weng SF, Tseng YH: Genomic characterization of the intron-containing T7-like phage phiL7 of Xanthomonas campestris. Appl Environ Microbiol 2009, 75:7828-7837.
  文献评价指标  
  下载次数:22次 浏览次数:10次