期刊论文详细信息
BMC Research Notes
Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease
Jyrki J Eloranta3  Gerd A Kullak-Ublick3  Gerhard Rogler4  Pawel Gaj1  Jaroslaw Regula1  Kaspar Truninger2  Jessica Mwinyi3  Ragam Attinkara3 
[1] Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education and the Maria Skłodowska Curie Memorial Cancer Center, Institute of Oncology, Warsaw, Poland;Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Switzerland and Division of Gastroenterology, Regional Hospital, Langenthal, Switzerland;Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland;Division of Gastroenterology and Hepatology, University Hospital, Zurich, Switzerland
关键词: Ulcerative colitis;    Single nucleotide polymorphisms;    Inflammatory bowel disease;    Farnesoid X receptor;    Crohn’s disease;    Bile acid homeostasis;   
Others  :  1165860
DOI  :  10.1186/1756-0500-5-461
 received in 2012-04-26, accepted in 2012-08-01,  发布年份 2012
PDF
【 摘 要 】

Background

Pathogenesis of inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), involves interaction between environmental factors and inappropriate immune responses in the intestine of genetically predisposed individuals. Bile acids and their nuclear receptor, FXR, regulate inflammatory responses and barrier function in the intestinal tract.

Methods

We studied the association of five variants (rs3863377, rs7138843, rs56163822, rs35724, rs10860603) of the NR1H4 gene encoding FXR with IBD. 1138 individuals (591 non-IBD, 203 UC, 344 CD) were genotyped for five NR1H4 genetic variants with TaqMan SNP Genotyping Assays.

Results

We observed that the NR1H4 SNP rs3863377 is significantly less frequent in IBD cases than in non-IBD controls (allele frequencies: P = 0.004; wild-type vs. SNP carrier genotype frequencies: P = 0.008), whereas the variant rs56163822 is less prevalent in non-IBD controls (allele frequencies: P = 0.027; wild-type vs. SNP carrier genotype frequencies: P = 0.035). The global haplotype distribution between IBD and control patients was significantly different (P = 0.003). This also held true for the comparison between non-IBD and UC groups (P = 0.004), but not for the comparison between non-IBD and CD groups (P = 0.079).

Conclusions

We show that genetic variation in FXR is associated with IBD, further emphasizing the link between bile acid signaling and intestinal inflammation.

【 授权许可】

   
2012 Attinkara et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416034224251.pdf 353KB PDF download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Kaser A, Zeissig S, Blumberg RS: Inflammatory bowel disease. Annu Rev Immunol 2010, 28:573-621.
  • [2]Jess T, Riis L, Jespersgaard C, Hougs L, Andersen PS, Orholm MK, Binder V, Munkholm P: Disease concordance, zygosity, and NOD2/CARD15 status: follow-up of a population-based cohort of Danish twins with inflammatory bowel disease. Am J Gastroenterol 2005, 100:2486-2492.
  • [3]Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ: Nuclear receptors and lipid physiology: opening the X-files. Science 2001, 294:1866-1870.
  • [4]Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al.: The nuclear receptor superfamily: the second decade. Cell 1995, 83:835-839.
  • [5]Glass CK: Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 1994, 15:391-407.
  • [6]Eloranta JJ, Kullak-Ublick GA: Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005, 433:397-412.
  • [7]Wang H, Chen J, Hollister K, Sowers LC, Forman BM: Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999, 3:543-553.
  • [8]Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, et al.: Bile acids: natural ligands for an orphan nuclear receptor. Science 1999, 284:1365-1368.
  • [9]Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B: Identification of a nuclear receptor for bile acids. Science 1999, 284:1362-1365.
  • [10]Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzlu PL, Haws TF, Kassam A, Powell F, et al.: Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 2002, 290:35-43.
  • [11]Anisfeld AM, Kast-Woelbern HR, Meyer ME, Jones SA, Zhang Y, Williams KJ, Willson T, Edwards PA: Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J Biol Chem 2003, 278:20420-20428.
  • [12]Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA: Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 2000, 275:10638-10647.
  • [13]Eloranta JJ, Kullak-Ublick GA: The role of FXR in disorders of bile acid homeostasis. Physiology (Bethesda) 2008, 23:286-295.
  • [14]Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA: FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 2006, 47:201-214.
  • [15]Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA: The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 2006, 290:G476-G485.
  • [16]Plass JR, Mol O, Heegsma J, Geuken M, Faber KN, Jansen PL, Muller M: Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 2002, 35:589-596.
  • [17]Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ: Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001, 276:28857-28865.
  • [18]Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, Lamba J, Kim RB, Ramachandran V, Komoroski BJ, et al.: Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001, 276:39411-39418.
  • [19]Neimark E, Chen F, Li X, Shneider BL: Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 2004, 40:149-156.
  • [20]Zollner G, Wagner M, Fickert P, Geier A, Fuchsbichler A, Silbert D, Gumhold J, Zatloukal K, Kaser A, Tilg H, et al.: Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Gastrointest Liver Physiol 2005, 289:G798-G805.
  • [21]Eloranta JJ, Jung D, Kullak-Ublick GA: The human Na + −taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol 2006, 20:65-79.
  • [22]Chiang JY, Kimmel R, Weinberger C, Stroup D: Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000, 275:10918-10924.
  • [23]Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, et al.: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000, 6:517-526.
  • [24]Wildenberg ME, van den Brink GR: FXR activation inhibits inflammation and preserves the intestinal barrier in IBD. Gut 2011, 60:432-433.
  • [25]Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S: The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 2009, 183:6251-6261.
  • [26]Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, et al.: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 2006, 103:3920-3925.
  • [27]Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, Klomp LW, Siersema PD, Schipper ME, Danese S, et al.: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011, 60:463-472.
  • [28]Gadaleta RM, Oldenburg B, Willemsen ECL, Spit M, Murzilli S, Salvatore L, Klomp LWJ, Siersema PD, van Erpecum KJ, van Mil SWC: Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-[kappa]B signaling in the intestine. Biochimica et Biophysica Acta (BBA). Molecular Basis of Disease 2011, 1812:851-858.
  • [29]Lian F, Xing X, Yuan G, Schafer C, Rauser S, Walch A, Rocken C, Ebeling M, Wright MB, Schmid RM, et al.: Farnesoid X receptor protects human and murine gastric epithelial cells against inflammation-induced damage. Biochem J 2011, 438:315-323.
  • [30]Kovacs P, Kress R, Rocha J, Kurtz U, Miquel JF, Nervi F, Méndez-Sánchez N, Uribe M, Bock HH, Schirin-Sokhan R, et al.: Variation of the gene encoding the nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. J Hepatol 2008, 48:116-124.
  • [31]Wadsworth CA, Dixon PH, Wong JH, Chapman MH, McKay SC, Sharif A, Spalding DR, Pereira SP, Thomas HC, Taylor-Robinson SD, et al.: Genetic factors in the pathogenesis of cholangiocarcinoma. Dig Dis 2011, 29:93-97.
  • [32]Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG, et al.: Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 2007, 133:507-516.
  • [33]Chen X-Q, Wang L-L, Shan Q-W, Tang Q, Deng Y-N, Lian S-J, Yun X: A novel heterozygous NRIH4 termination codon mutation in idiopathic infantile cholestasis. World Journal of Pediatrics 2012, 8:67-71.
  • [34]Zhang H, Massey D, Tremelling M, Parkes M: Genetics of inflammatory bowel disease: clues to pathogenesis. Br Med Bull 2008, 87:17-30.
  • [35]Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, et al.: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 2010, 42:1118-1125.
  • [36]Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cezard J-P, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, et al.: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411:599-603.
  • [37]Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, et al.: A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411:603-606.
  • [38]Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Nunez G: An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 2000, 275:27823-27831.
  • [39]Inohara N, Ogura Y, Chen FF, Muto A, Nunez G: Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 2001, 276:2551-2554.
  • [40]Sashio H, Tamura K, Ito R, Yamamoto Y, Bamba H, Kosaka T, Fukui S, Sawada K, Fukuda Y, Satomi M, et al.: Polymorphisms of the TNF gene and the TNF receptor superfamily member 1B gene are associated with susceptibility to ulcerative colitis and Crohn’s disease, respectively. Immunogenetics 2002, 53:1020-1027.
  • [41]Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, Nimmo ER, Massey D, Berzuini C, Johnson C, et al.: Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 2008, 40:710-712.
  • [42]Oostenbrug LE, Drenth JP, de Jong DJ, Nolte IM, Oosterom E, van Dullemen HM, van der Linde K, te Meerman GJ, van der Steege G, Kleibeuker JH, et al.: Association between Toll-like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis 2005, 11:567-575.
  • [43]Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, Quertinmont E, Abramowicz M, Van Gossum A, Deviere J, et al.: Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 2004, 53:987-992.
  • [44]Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661-678.
  • [45]Franke A, Balschun T, Karlsen TH, Hedderich J, May S, Lu T, Schuldt D, Nikolaus S, Rosenstiel P, Krawczak M, et al.: Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 2008, 40:713-715.
  • [46]Sugawara K, Olson TS, Moskaluk CA, Stevens BK, Hoang S, Kozaiwa K, Cominelli F, Ley KF, McDuffie M: Linkage to peroxisome proliferator-activated receptor-[gamma] in SAMP1/YitFc mice and in human Crohn’s disease. Gastroenterology 2005, 128:351-360.
  • [47]Waller S, Tremelling M, Bredin F, Godfrey L, Howson J, Parkes M: Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut 2006, 55:809-814.
  • [48]Schwab M, Schaeffeler E, Marx C, Fromm MF, Kaskas B, Metzler J, Stange E, Herfarth H, Schoelmerich J, Gregor M, et al.: Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003, 124:26-33.
  • [49]Brant SR, Panhuysen CIM, Nicolae D, Reddy DM, Bonen DK, Karaliukas R, Zhang L, Swanson E, Datta LW, Moran T, et al.: MDR1 Ala893 Polymorphism Is Associated with Inflammatory Bowel Disease. Am J Hum Genet 2003, 73:1282-1292.
  • [50]Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G, et al.: Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004, 36:471-475.
  • [51]Kovacs P, Kress R, Rocha J, Kurtz U, Miquel JF, Nervi F, Mendez-Sanchez N, Uribe M, Bock HH, Schirin-Sokhan R, et al.: Variation of the gene encoding the nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. J Hepatol 2008, 48:116-124.
  • [52]van den Berg SW, Dolle ME, Imholz S, van der AD, van t Slot R, Wijmenga C, Verschuren WM, Strien C, Siezen CL, Hoebee B, et al.: Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: a population-based cohort study. Int J Obes (Lond) 2009, 33:1143-1152.
  • [53]Christophi C, Hughes ER: Hepatobiliary disorders in inflammatory bowel disease. Surg Gynecol Obstet 1985, 160:187-193.
  • [54]Navaneethan U, Shen B: Hepatopancreatobiliary manifestations and complications associated with inflammatory bowel disease. Inflamm Bowel Dis 2010, 16:1598-1619.
  • [55]Marzolini C, Tirona RG, Gervasini G, Poonkuzhali B, Assem M, Lee W, Leake BF, Schuetz JD, Schuetz EG, Kim RB: A Common Polymorphism in the Bile Acid Receptor Farnesoid X Receptor Is Associated with Decreased Hepatic Target Gene Expression. Mol Endocrinol 2007, 21:1769-1780.
  • [56]Nijmeijer RM, Gadaleta RM, van Mil SW, van Bodegraven AA, Crusius JB, Dijkstra G, Hommes DW, de Jong DJ, Stokkers PC, Verspaget HW, et al.: Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS One 2011, 6:e23745.
  • [57]Trauner M, Halilbasic E: Nuclear Receptors as New Perspective for the Management of Liver Diseases. Gastroenterology 2011, 140:1120-1125. e1112
  • [58]Pittet V, Juillerat P, Mottet C, Felley C, Ballabeni P, Burnand B, Michetti P, Vader JP: Cohort profile: the Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS). Int J Epidemiol 2009, 38:922-931.
  • [59]Becker T, Knapp M: A powerful strategy to account for multiple testing in the context of haplotype analysis. Am J Hum Genet 2004, 75:561-570.
  • [60]Becker T, Schumacher J, Cichon S, Baur MP, Knapp M: Haplotype interaction analysis of unlinked regions. Genet Epidemiol 2005, 29:313-322.
  文献评价指标  
  下载次数:9次 浏览次数:10次